首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The HIV-1 Gag polyprotein contains a segment called p2, located between the capsid (CA) and nucleocapsid (NC) domains, that is essential for ordered virus assembly and infectivity. We subcloned, overexpressed, and purified a 156-residue polypeptide that contains the C-terminal capsid subdomain (CA(CTD)) through the NC domain of Gag (CA(CTD)-p2-NC, Gag residues 276-431) for NMR relaxation and sedimentation equilibrium (SE) studies. The CA(CTD) and NC domains are folded as expected, but residues of the p2 segment, and the adjoining thirteen C-terminal residues of CA(CTD) and thirteen N-terminal residues of NC, are flexible. Backbone NMR chemical shifts of these 40 residues deviate slightly from random coil values and indicate a small propensity toward an alpha-helical conformation. The presence of a transient coil-to-helix equilibrium may explain the unusual and necessarily slow proteolysis rate of the CA-p2 junction. CA(CTD)-p2-NC forms dimers and self-associates with an equilibrium constant (Kd = 1.78 +/- 0.5 microM) similar to that observed for the intact capsid protein (Kd = 2.94 +/- 0.8 microM), suggesting that Gag self-association is not significantly influence by the P2 domain.  相似文献   

2.
Maturation of nascent virions, a key step in retroviral replication, involves cleavage of the Gag polyprotein by the viral protease into its matrix (MA), capsid (CA), and nucleocapsid (NC) components and their subsequent reorganization. Bevirimat (BVM) defines a new class of antiviral drugs termed maturation inhibitors. BVM acts by blocking the final cleavage event in Gag processing, the separation of CA from its C-terminal spacer peptide 1 (SP1). Prior evidence suggests that BVM binds to Gag assembled in immature virions, preventing the protease from accessing the CA-SP1 cleavage site. To investigate this hypothesis, we used cryo-electron tomography to examine the structures of (noninfectious) HIV-1 viral particles isolated from BVM-treated cells. We find that these particles contain an incomplete shell of density underlying the viral envelope, with a hexagonal honeycomb structure similar to the Gag lattice of immature HIV but lacking the innermost, NC-related, layer. We conclude that the shell represents a remnant of the immature Gag lattice that has been processed, except at the CA-SP1 sites, but has remained largely intact. We also compared BVM-treated particles with virions formed by the mutant CA5, in which cleavage between CA and SP1 is also blocked. Here, we find a thinner CA-related shell with no visible evidence of honeycomb organization, indicative of an altered conformation and further suggesting that binding of BVM stabilizes the immature lattice. In both cases, the observed failure to assemble mature capsids correlates with the loss of infectivity.  相似文献   

3.
The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.  相似文献   

4.

Background

Ankyrins are cellular mediators of a number of essential protein-protein interactions. Unlike intrabodies, ankyrins are composed of highly structured repeat modules characterized by disulfide bridge-independent folding. Artificial ankyrin molecules, designed to target viral components, might act as intracellular antiviral agents and contribute to the cellular immunity against viral pathogens such as HIV-1.

Results

A phage-displayed library of artificial ankyrins was constructed, and screened on a polyprotein made of the fused matrix and capsid domains (MA-CA) of the HIV-1 Gag precursor. An ankyrin with three modules named AnkGAG1D4 (16.5 kDa) was isolated. AnkGAG1D4 and MA-CA formed a protein complex with a stoichiometry of 1:1 and a dissociation constant of K d ~ 1 ??M, and the AnkGAG1D4 binding site was mapped to the N-terminal domain of the CA, within residues 1-110. HIV-1 production in SupT1 cells stably expressing AnkGAG1D4 in both N-myristoylated and non-N-myristoylated versions was significantly reduced compared to control cells. AnkGAG1D4 expression also reduced the production of MLV, a phylogenetically distant retrovirus. The AnkGAG1D4-mediated antiviral effect on HIV-1 was found to occur at post-integration steps, but did not involve the Gag precursor processing or cellular trafficking. Our data suggested that the lower HIV-1 progeny yields resulted from the negative interference of AnkGAG1D4-CA with the Gag assembly and budding pathway.

Conclusions

The resistance of AnkGAG1D4-expressing cells to HIV-1 suggested that the CA-targeted ankyrin AnkGAG1D4 could serve as a protein platform for the design of a novel class of intracellular inhibitors of HIV-1 assembly based on ankyrin-repeat modules.  相似文献   

5.
The small molecule 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB) potently inhibits human immunodeficiency virus, type 1 (HIV-1) replication by interfering with proteolytic cleavage of the viral Gag protein at a specific site. Here we have demonstrated that the antiviral mechanism involves the association of DSB with Gag at a 1:1 stoichiometry within immature HIV-1 particles. The binding was specific, as mutations in Gag that confer resistance to DSB inhibited the association, which could be competed by DSB but not by the inactive compound betulinic acid. The addition of DSB to purified immature viral cores inhibited the cleavage of Gag at the CA-SP1 junction in vitro, thus reproducing the effect of the drug when present during maturation of HIV-1 particles. Based on these findings, we propose a model in which a trimer of DSB associates with the CA-SP1 junction of adjacent subunits within the Gag polymer. The model may explain the ability of highly similar compounds to specifically target the seemingly unrelated steps of HIV-1 maturation and virus entry.  相似文献   

6.
Size polydispersity of immature human immunodeficiency virus type 1 (HIV-1) particles represents a challenge for traditional methods of biological ultrastructural analysis. An in vitro model for immature HIV-1 particles constructed from recombinant Gag proteins lacking residues 16-99 and the p6 domain assembled around spherical nanoparticles functionalized with DNA. This template-directed assembly approach led to a significant reduction in size polydispersity and revealed previously unknown structural features of immature-like HIV-1 particles. Electron microscopy and image reconstruction of these particles suggest that the Gag shell formed from different protein regions that are connected by a “scar”—an extended defect connecting the edges of two continuous, regularly packed protein layers. Thus, instead of a holey protein array, the experimental model presented here appears to consist of a continuous array of ∼ 5000 proteins enveloping the core, in which regular regions are separated by extended areas of disorder.  相似文献   

7.
The major structural elements of retroviruses are contained in a single polyprotein, Gag, which in human immunodeficiency virus type 1 (HIV-1) comprises the MA, CA, spacer peptide 1 (SP1), NC, SP2, and p6 polypeptides. In the immature HIV-1 virion, the domains of Gag are arranged radially with the N-terminal MA domain at the membrane and C-terminal NC-SP2-p6 region nearest to the center. Here, we report the three-dimensional structures of individual immature HIV-1 virions, as obtained by electron cryotomography. The concentric shells of the Gag polyprotein are clearly visible, and radial projections of the different Gag layers reveal patches of hexagonal order within the CA and SP1 shells. Averaging well-ordered unit cells leads to a model in which each CA hexamer is stabilized by a bundle of six SP1 helices. This model suggests why the SP1 spacer is essential for assembly of the Gag lattice and how cleavage between SP1 and CA acts as a structural switch controlling maturation.  相似文献   

8.
Glycosylated Gag (Glycogag) is a transmembrane protein encoded by murine and feline oncornaviruses. While the protein is dispensible for virus replication, Glycogag-null mutants of a neurovirulent murine oncornavirus are slow to spread in vivo and exhibit a loss of pathogenicity. The function of this protein in the virus life cycle, however, is not understood. Glycogag is expressed at the plasma membrane of infected cells but has not been detected in virions. In the present study we have reexamined this issue and have found an N-terminal cleavage fragment of Glycogag which was pelleted by high-speed centrifugation and sedimented in sucrose density gradients at the same bouyant density as virus particles. Its association with virions was confirmed by velocity sedimentation through iodixanol, which effectively separated membrane microvesicles from virus particles. Furthermore, the apparent molecular weight of the virion-associated protein was different from that of the protein extracted from the plasma membrane, suggesting some level of specificity or selectivity of incorporation.  相似文献   

9.
Limited digestion of fructose 1,6-bisphosphatase with subtilisin produces an S-peptide with an about 60-residue peptide fragment that is non-covalently associated with the enzyme. The 60-residue peptide fragment con-sists of the most part of allosteric site for AMP binding. It could be separated from S-protein by gel filtration with a Sephadex G-75 column equilibrated with 9% formic acid. According to X-ray diffraction results the S-peptide consists of two α-helices without β-strand and the α-helix content is about 60% in the 60-residue-peptide fragment. When the enzyme is subjected to limited proteolysis with subtilisin, the secondary structure of the enzyme does not show a de-tectable change in CD spectrum. The CD spectra of the isolated S-peptide were measured under different concentra-tions. In the absence of GuHCl, S-peptide had 30% a-helix and 38.5% turn-like structure but had no β-strand, sug-gesting that the N-terminal 60-residue fragment, which is synthesized initially by ribosome, would fo  相似文献   

10.
Anderson EC  Lever AM 《Journal of virology》2006,80(21):10478-10486
The full-length viral RNA of human immunodeficiency virus type 1 (HIV-1) functions both as the mRNA for the viral structural proteins Gag and Gag/Pol and as the genomic RNA packaged within viral particles. The packaging signal which Gag recognizes to initiate genome encapsidation is in the 5' untranslated region (UTR) of the HIV-1 RNA, which is also the location of translation initiation complex formation. Hence, it is likely that there is competition between the translation and packaging processes. We studied the ability of Gag to regulate translation of its own mRNA. Gag had a bimodal effect on translation from the HIV-1 5' UTR, stimulating translation at low concentrations and inhibiting translation at high concentrations in vitro and in vivo. The inhibition was dependent upon the ability of Gag to bind the packaging signal through its nucleocapsid domain. The stimulatory activity was shown to depend on the matrix domain of Gag. These results suggest that Gag controls the equilibrium between translation and packaging, ensuring production of enough molecules of Gag to make viral particles before encapsidating its genome.  相似文献   

11.
Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.  相似文献   

12.
13.
A single multi-domain viral protein, termed Gag, is sufficient for assembly of retrovirus-like particles in mammalian cells. We have purified the human immunodeficiency virus type 1 (HIV-1) Gag protein (lacking myristate at its N terminus and the p6 domain at its C terminus) from bacteria. This protein is capable of assembly into virus-like particles in a defined in vitro system. We have reported that it is in monomer-dimer equilibrium in solution, and have described a mutant Gag protein that remains monomeric at high concentrations in solution. We report that the mutant protein retains several properties of wild-type Gag. This mutant enabled us to analyze solutions of monomeric protein. Hydrodynamic studies on the mutant protein showed that it is highly asymmetric, with a frictional ratio of 1.66. Small-angle neutron scattering (SANS) experiments confirmed its asymmetry and yielded an R(g) value of 34 A. Atomic-level structures of individual domains within Gag have previously been determined, but these domains are connected in Gag by flexible linkers. We constructed a series of models of the mutant Gag protein based on these domain structures, and tested each model computationally for its agreement with the experimental hydrodynamic and SANS data. The only models consistent with the data were those in which Gag was folded over, with its N-terminal matrix domain near its C-terminal nucleocapsid domain in three-dimensional space. Since Gag is a rod-shaped molecule in the assembled immature virion, these findings imply that Gag undergoes a major conformational change upon virus assembly.  相似文献   

14.
The major packaging signal of human immunodeficiency virus type 1 (HIV-1) RNA has been localised to the region 3' to the major splice donor within the leader sequence. Secondary structural studies for this region of the HIV-1 genome have shown the existence of a stem-loop structure capped by a purine-rich tetraloop. Extensive mapping data presented here lead to the complete characterisation of the structure of the stem-loop, including a new purine-rich internal loop in the lower part of the structure and the previously established GGAG tetraloop at its tip. Biochemical analysis reveals that both internal loop and tetraloop are primary sites for interaction with Gag polyprotein, and that binding of Gag protein leads to a conformational change which alters the RNA structure. NMR spectroscopy has been used to determine the three-dimensional structure of this complete stem-loop structure. The structural analysis reveals a significant difference between the apical part of the stem-loop structure, which adopts a well-defined conformation, and the purine-rich internal loop, which is instead very flexible. In contrast to what is generally observed for internal loop structures in RNA, this region of the encapsidation signal adopts a structure lacking stable interstrand interactions capable of stabilising a unique conformation. We suggest that the stem-loop structure represents a nucleation site for Gag protein binding, and that the protein exploits the flexibility of the internal loop to initiate the unwinding of the structure with successive addition of Gag molecules interacting with the RNA and each other through conserved I (interaction) domains.  相似文献   

15.
HIV-1 Gag is the only protein required for retroviral particle assembly. There is evidence suggesting that phosphatidylinositol phosphate and nucleic acid are essential for viruslike particle assembly. To elucidate structural foundations of interactions of HIV-1 Gag with the assembly cofactors PI(4,5)P2 and RNA, we employed mass spectrometric protein footprinting. In particular, the NHS-biotin modification approach was used to identify the lysine residues that are exposed to the solvent in free Gag and are protected from biotinylation by direct protein-ligand or protein-protein contacts in Gag complexes with PI(4,5)P2 and/or RNA. Of 21 surface lysines readily modified in free Gag, only K30 and K32, located in the matrix domain, were strongly protected in the Gag-PI(4,5)P2 complex. Nucleic acid also protected these lysines, but only at significantly higher concentrations. In contrast, nucleic acids and not PI(4,5)P2 exhibited strong protection of two nucleocapsid domain residues: K391 and K424. In addition, K314, located in the capsid domain, was specifically protected only in the presence of both PI(4,5)P2 and nucleic acid. We suggest that concerted binding of PI(4,5)P2 and nucleic acid to the matrix and nucleocapsid domains, respectively, promotes protein-protein interactions involving capsid domains. These protein-protein interactions must be involved in virus particle assembly.  相似文献   

16.
Bouamr F  Scarlata S  Carter C 《Biochemistry》2003,42(21):6408-6417
Assembly of the human immunodeficiency virus type 1 (HIV-1) first occurs on the plasma membrane of host cells where binding is driven by strong electrostatic interactions between the N-terminal matrix (MA) domain of the structural precursor polyprotein, Gag, and the membrane. MA is also myristylated, but the exact role this modification plays is not clear. In this study, we compared the protein oligomerization and membrane binding properties of Myr(+) and Myr(-) Gag(MA) expressed in COS-1 cells. Sedimentation studies in solution showed that both the myristylated Gag precursor and the mature MA product were detected in larger complexes than their unmyristylated counterparts, and the myristylated MA protein bound liposomes with approximately 3-fold greater affinity than unmyristylated MA. Aromatic residues near the N-terminal region of the MA protein were more accessible to chymotrypsin in the unmyristylated form and, consistent with this, an epitope in the N-terminal region was more exposed. Moreover, the cyclophilin binding site in the CA domain downstream of MA was more accessible in the unmyristylated Gag protein, while the Tsg101 binding site in the C-terminal region was equally available in the unmyristylated and myristylated Gag proteins. Taken together, our results suggest that myristylation promotes assembly by inducing conformational changes and facilitating MA multimerization. This observation offers a novel role for myristylation.  相似文献   

17.
The stoichiometry of Gag protein in HIV-1   总被引:1,自引:0,他引:1  
The major structural components of HIV-1 are encoded as a single polyprotein, Gag, which is sufficient for virus particle assembly. Initially, Gag forms an approximately spherical shell underlying the membrane of the immature particle. After proteolytic maturation of Gag, the capsid (CA) domain of Gag reforms into a conical shell enclosing the RNA genome. This mature shell contains 1,000-1,500 CA proteins assembled into a hexameric lattice with a spacing of 10 nm. By contrast, little is known about the structure of the immature virus. We used cryo-EM and scanning transmission EM to determine that an average (145 nm diameter) complete immature HIV particle contains approximately 5,000 structural (Gag) proteins, more than twice the number from previous estimates. In the immature virus, Gag forms a hexameric lattice with a spacing of 8.0 nm. Thus, less than half of the CA proteins form the mature core.  相似文献   

18.
The proton resonances of the biologically active peptide parathyroid-hormone-related protein (residues 1-34) were assigned using one-dimensional spin-decoupling techniques, two-dimensional correlated spectroscopy and by comparing the spectra of the peptides 1-20, 1-25, 1-29, 7-34 and 15-34. The conformation of 1-34 was determined using one- and two-dimensional nuclear Overhauser enhancement spectroscopy in the rotating frame. Amide proton temperature coefficients, vicinal coupling constants and circular dichroic spectra helped reveal a surprisingly compact structure with residues 3-9 forming alpha-helix, type-I beta-turns between residues 10-13 and 16-19 and several interactions between the N-terminal residues and the C-terminal residues. Of these latter, the strongest appeared to be between Asp-10 and Phe-22. One peptide surface in the deduced model presents multiple positive charges, while the opposite surface has a hydrophobic character possibly functioning to exclude water from the binding interface and enhancing the binding constant.  相似文献   

19.

Background

HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with RNA, and the p6 domain containing the PTAP motif that binds the cellular ESCRT factor TSG101 and ALIX. Deletion of the NC domain of Gag (GagNC) results in defective Gag assembly, a decrease in virus production and, thus probably affects recruitment of the ESCRT machinery. To investigate the role of GagNC in this recruitment, we analysed its impact on TSG101 and ALIX localisations and interactions in cells expressing Gag.

Methods

Cells expressing mCherry-Gag or derivatives, alone or together with eGFP-TSG101 or eGFP-ALIX, were analysed by confocal microscopy and FLIM-FRET. Chemical shift mapping between TSG101-UEV motif and Gag C-terminus was performed by NMR.

Results

We show that deletion of NC or of its two zinc fingers decreases the amount of Gag-TSG101 interacting complexes in cells. These findings are supported by NMR data showing chemical shift perturbations in the NC domain in- and outside - of the zinc finger elements upon TSG101 binding. The NMR data further identify a large stretch of amino acids within the p6 domain directly interacting with TSG101.

Conclusion

The NC zinc fingers and p6 domain of Gag participate in the formation of the Gag-TSG101 complex and in its cellular localisation.

General significance

This study illustrates that the NC and p6 domains cooperate in the interaction with TSG101 during HIV-1 budding. In addition, details on the Gag-TSG101 complex were obtained by combining two high resolution biophysical techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号