首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This investigation was principally undertaken to test the ionic gradient hypothesis as applied to active p-aminohippurate uptake in the rabbit kidney cortical slice preparation. Efflux of p-aminohippurate from the slice was shown to be independent of external Na+ concentration. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing p-aminohippurate increased intracellular concentrations of both Na+ and K+, and p-aminohippurate accumulation occurred. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing ouabain and p-aminohippurate resulted in a net increase in intracellular Na+ concentration but no p-aminohippurate accumulation occurred. Different combinations of preincubation and incubation media gave a high to low array of intracellular Na+ concentrations and these directly reflected their respective p-aminohippurate uptake. These results suggest that the Na+-gradient hypothesis does not adequately explain the transport of organic acids in rabbit kidney. These results also suggest that Na+ possibly has an intracellular role through its stimulation of (Na+ + K+)-ATPase channeled to energizing the p-aminohippurate accumulative mechanism.  相似文献   

2.
3.
With the aid of a direct microfluorimetric method a dependence of organic onion (fluorescein) transport into proximal tubules of surviving frog kidney on Na+-flow in the opposite direction was studied. It was shown that the complete removal of Na+ from the tubules lumen resulted in inhibition of fluorescein transport of about 30%. After a specific inhibitor of sodium channels, amiloride (10-3M) having been introduced into lumen of the tubules, the fluorescein transport was inhibited to the same extent. Amiloride affects only when Na+ is present in the tubular lumen. S present in the tubular lumen. Strophantin K (5 · 10?5 M), a specific inhibitor of (Na+, K+)-ATPase, reduced fluorescein transport about twice. Substances increasing the 3′,5′-AMP level in cells (theophylline, NaF) and exogenous 3′,5′-AMP inhibited fluorescein transport while substance that decreased the 3′,5′-AMP level intracellularly (carbachol) stimulated it. For realization of these effects Na+ should be present in proximal tubules lumen.Thus, the various effects on the Na+ flow from lumen of the tubules to medium at the level of both the basal and apical membranes alter the rate of organic acid active transport from medium to lumen as a result of changes in the maximum rate of transport (V) with unchanged Km. It is suggested that the system of Na+ extrusion from proximal tubules produces peritubular membrane-side (near the membrane) gradient of Na+ concentration which may be higher than the summary Na+ gradient between the medium and the cytoplasm. The magnitude of this gradient affects the maximal rate value of Na+-dependent organic acid transport. So, there is a double dependence of the active transport system on Na+, and the stages where Na+ is needed are: (1) the formation of a carrier-substrate-Na+ complex and (2) the production of substantial membrane-side Na+ gradient at the expense of Na+ extrusion from the tubules.  相似文献   

4.
With the aid of direct microfluorimetric determination of marker organic anions (fluorescein and uranin) accumulated in the proximal tubules the influence of Na+ in the bath medium on the active transport of these anions was studied. Kinetic analysis of the rate dependence of organic acid active transport into tubules on their concentration in the bath medium with a constant Na+ concentration permitted to define values of apparent Km and V for uranin and fluorescein transport in the medium with different Na+ content. It was shown that a decrease of Na+ concentration in the medium increases Km and lowers the V/Km ratio with uncharged V. By varying the Na+ concentration in the medium with a constant concentration of the marker anion the KmNa+ and VNa+ values for fluorescein and uranin transport were determined. A KmNa+ value for fluorescein in twice as much that for uranin. The 1/Km value for uranin transport is a linear function of Na+ concentration, while for fluorescein transport it is a quadratic one. Therefore it is concluded that two Na+ from the medium participate in active transfer of one fluorescein anion whereas only one Na+ from the medium is required for active transfer of one uranin anion. The run out of fluorescein from tubules preloaded with this acid is sharply reinforced by the Na+ omission from the medium. Thus, active transport of organic acids in proximal tubules of frog kidney is Na+-dependent, and Na+ from the medium is likely to participate directly in formation of a transport complex. When Na+ is absent in the medium a carrier fulfils a facilitated diffusion only.  相似文献   

5.
Summary The effects of various external cations and sodium transport inhibitors on sodium uptake by the sailfin molly,Poecilia latipinna, acclimated to sea water was investigated. While the injection of acetazolamide had no effect on sodium uptake, addition of NH4 +, H+, K+ or amiloride to the external solution significantly inhibited the uptake of sodium by the fish. These data support the proposition that sea water acclimatedP. latipinna possess the Na+/H+ and/or Na+/NH4 + exchange mechanisms which are normally thought to be present only in fresh water acclimated fish.  相似文献   

6.
The influence of Tl+ on Na+ transport and on the ATPase activity in human erythrocytes was studied. 0.1–1.0 mM Tl+ added to a K+-free medium inhibited the ouabain-sensitive self-exchange of Na+ and activated both the ouabain-sensitive 22Na outward transport and the transport related ATPase. 5–10 mM external Tl+ caused inhibition of the ouabain-sensitive 22Na efflux as well as the (Na+ + Tl+)-ATPase. Competition between the internal Na+ and rapidly penetrating thallous ions at the inner Na+-specific binding sites of the erythrocyte membrane could account for the inhibitory effect of Tl+. An increase of the internal Na+ concentration in erythrocytes or in ghosts protected the system against the inhibitory effect of high concentration of Tl+. A protective effect of Na+ was also demonstrated on the (Na+ + Tl+)-ATPase of fragmented erythrocyte membranes studied at various Na+ and Tl+ concentrations.  相似文献   

7.
The diarrhea observed in patients which cholera is known to be related to secretion of water and electrolytes into the intestinal lumen. However, the exact mechanisms involved in these secretory processes have remained unclear. Although it is clear that purified toxin acts on epithelial cell metabolism, its activity on Na+ transport across intestinal mucosa is equivocal: reported either to prevent net Na+ absorption or to cause net secretion of Na+ from serosa to mucosa. Since total transmural Na+ fluxes across “leaky” epithelia involve very significant movement via a paracellular shunt pathway, we studied the effects of cholera toxin on the cellular and paracellular pathways of Na+ movement. Unidirectional Na+ fluxes were examined as functions of applied potential in control tissues and in tissues from the same animal treated with purified cholera toxin. Treatment of rabbit ileum in vitro with toxin stimulated the cellular component of serosa-to-mucosa Na+ flux (from 2.41 ± 0.49 μequiv./h per cm2 under control conditions to 4.71 ± 0.43 μequiv./h per cm2 after treatment with toxin, P < 0.01). The effect of cholera toxin on Na+ movement through the cells from mucosa to serosa appeared to be insignificant. Finally, a marked decrease in the Na+ permeability (P < 0.01) and no detectable significant changes in transference number for Na+ of the paracellular shunt pathway were observed following treatment with cholera toxin. These results provide direct evidence for the hypothesis that purified cholera toxin stimulates active sodium secretion but has minimal effect on sodium absorption.  相似文献   

8.
Renilla lumisomes are membrane-bounded bioluminescent vesicles which produce light when the lumisomal membrane is made permeable to Ca2+. During studies of Ca2+ transport we found that lumisomes can be made permeable to Ca2+ by establishing a Na+ gradient with the higher Na+ concentration being on the inside of the lumisomal membrane. No other cation will substitute for Na+ on the inside but any of several monovalent cations can be used to maintain electroneutrality external to the lumisomes. This Na+ gradient dependent Ca2+ transport appears not to involve active transport and occurs on a millisecond time scale suggesting that it is rapid enough to account for the onset of bioluminescence in Renilla.  相似文献   

9.
Light-induced Na+ efflux was observed in sub-bacterial particles of Halobacterium halobium loaded and suspended in 4 M NaCl solution. The Na+ efflux was not ATP driven, since ATPase inhibitors were without effect or even enhanced efflux at low light intensity. Uncouplers, on the other hand, inhibited Na+ efflux, the inhibition being complete at low light intensity. The Na+ efflux was accompanied by proton influx. Both processes were dependent on light intensity, unaffected or enhanced by ATPase inhibitors and similarly affected by uncouplers. Proton influx was not observed in particles loaded with 4 M KCl instead of 4 M NaCl. Na+ transport in the dark could be induced by artificial formation of a pH difference across the membrane; changing the sign of the pH difference reversed the direction of the Na+ transport. Proton influx in the dark followed the artificial formation of a sodium gradient ([Na+]in > [Na+]out). These results may be explained by a Na+/H+ antiport mechanism. The fluxes of Na+ and H+ were of comparable magnitude, but the initial rate of Cl? efflux in the same experiment was one-third of the initial rate of Na+ efflux. Consequently Cl? is not regarded as a participant in the Na+ efflux mechanism.  相似文献   

10.
Influx and efflux of glycine have been examined as a function of external and internal Na+ concentrations, respectively, when ΔμNa = 0. With ΔμNa = 0 it was found that at comparable external and cellular Na+ levels, the Km for efflux was larger by an order of magnitude than the value for influx and the V for efflux was several times greater than the V for influx. For both fluxes the major effect of Na+ was to decrease the Km value. The observations are consistent with the conclusion that the Na+-dependent transport system is asymmetric per se. Influx and efflux of glycine were increased in a near linear manner by increasing the Na+ concentration from 13 to 100 mM, the half-time for glycine equilibration being a function of the Na+ concentration in absence of an electrochemical potential difference for Na+. In Na+-free media ([Na+] < 5 mM) equilibration of glycine between cells and medium was not achieved after 60 min at 25°C. With ΔμNa= 0, efflux (or uptake) of glycine was not affected by internal (or external) K+ between 20 and 120 mM suggesting that K+ plays no direct role in Na+-dependent transport of glycine in Ehrlich cells.  相似文献   

11.
12.
Membrane vesicles prepared from E. coli B strain 29–78 require Na+ for the accumulation of glutamate. Respiratory-driven transport of glutamate but not lysine is sensitive to the ionophore monensin. An artificially-imposed sodium gradient and/or membrane potential drives glutamate uptake. These results suggest that glutamate is accumulated via a Na+/glutamate symport.  相似文献   

13.
14.
Net absorption and accumulation of d-galactose, β-methyl d-glucose and low concentrations of 3-O-methyl-d-glucose by sheets of rabbit ileum are observed even when Na+ in the mucosal solution is replaced by choline. This indicates that active sugar transport can occur in the direction opposite to the brush-border Na+ gradient.  相似文献   

15.
The coprodeum is a very efficient Na+-retaining epithelium. Coprodeum from birds on a high Na+ diet has virtually no ion transport, while an Amiloride-sensitive Na+ absorption of 10–12 μ equiv·cm?2·h?1 is induced in the coprodeal epithelium from birds on a low Na+ diet. Both measurements of the Na+ influx and Na+-diffusion potentials across the luminal cell membrane have revealed a selective opening of this membrane to Na+ in birds on a low Na+ diet. Freeze-fracture P faces of the luminal membrane in coprodea taken from birds on a low Na+ diet have rod-shaped particles, 100 × 240 A?, in more than 20% of the principal cells. Rod-shaped particles appear in less than 1% of these cells in coprodea from high Na+-diet birds. Thus a low Na+ diet induces rod-shaped particles in the luminal cell membrane of the hen coprodeum. These new particles may function as Na+-channels mediating the increased Na+-influx across the apical cell membrane.  相似文献   

16.
In unfertilized eggs, the mechanism of valine uptake can be summarized as follows. It is saturable over the external concentration of valine and insensitive to the presence of external sodium, depletion of cellular energy supplies and intracellular acidosis. The activation energy for the transport reaction (16.3 kcal/mol) is within the range of values reported for active transport of small molecules. In fertilized eggs, the total rate of valine uptake can be divided into two components: (i) a Na+-insensitive uptake which accounts for about 7% of total absorption as shown by studies in Na+-free medium seems to possess the same characteristics as in unfertilized eggs, (ii) a Na+-dependent transport of valine which constitutes the main entry is formed about 5 min after fertilization. It follows Michaelis-Menten kinetics characterized by 15-fold increase in Vmax with no change in Km. These two mechanisms have characteristics in common, such as their insensitivity to metabolic energy supply, their energy of activation and their ability to concentrate valine. The relationship between the establishment of the Na+-dependent valine uptake and the ionic events triggered by fertilization is discussed.  相似文献   

17.
Membrane vesicles from a red mutant of Halobacteriumhalobium R1 accumulate protons when illuminated causing the pH of the suspension to rise. Sodium is extruded from the vesicles and a membrane potential is formed. This potential and the proton uptake are abolished by valinomycin if K+ is present. In contrast, Na+-efflux is uninhibited by valinomycin even though no membrane potential is detectable and H+ influx does not occur. Bis (hexafluoracetonyl)acetone (1799) stimulates proton uptake but does not abolish membrane potential. We propose that a light-dependent sodium pump is present. Passive proton uptake occurs in response to the electrical gradient created by this light-driven Na+ pump in contrast to the active proton, and passive Na+ flux that occurs in response to the light-driven proton pump described in vesicles of the parent strain of H.halobium R1.  相似文献   

18.
The Na+-dependent d-glucose transport reaction in rabbit jejunal brush-border vesicles was studied. Initial rate data were obtained by fitting a polynomial equation to progress curves at different d-glucose concentrations and extracting the slope of the tangent at zero-time. Kinetic replots of the initial rate values produced biphasic Hofstee patterns indicative of two pathways for transport distinguished by their Km values for glucose. Neither was dependent on the presence of a membrane potential. Both were dependent on Na+ and both were inhibited by phlorizin. Increasing external sodium was found to elevate the apparent Vmax for both pathways. Internal sodium was inhibitory. Pulsed progress curve analysis indicated that the effect of internal sodium was best characterized as carrier sequestration by a sodium-carrier binary complex. Inhibition by internal sodium was completely reversed by the presence, internally, of d-glucose. The presence of two pathways and the kinetic constants for these pathways do not agree with the conclusions of Hopfer and Groseclose (1980) J. Biol. Chem. 255, 4453–4462). Experiments are presented which bear on the reason for the disagreement.  相似文献   

19.
After a 20 min initial washout, the rate of loss of radioactively labeled sodium ions from sodium-enriched muscle cells is sensitive to the external sodium and potassium ion concentrations. In the absence of external potassium ions, the presence of external sodium ions increases the sodium efflux. In the presence of external potassium ions, the presence of external sodium ions decreases the sodium efflux. In the absence of external potassium ions about one-third of the Na+ efflux that depends upon the external sodium ion concentration can be abolished by 10-5 M glycoside. The glycoside-insensitive but external sodium-dependent Na+ efflux is uninfluenced by external potassium ions. In the absence of both external sodium and potassium ions the sodium efflux is relatively insensitive to the presence of 10-5 M glycoside. The maximal external sodium-dependent sodium efflux in the absence of external potassium ions is about 20% of the magnitude of the maximal potassium-dependent sodium efflux. The magnitude of the glycoside-sensitive sodium efflux in K-free Ringer solution is less than 10% of that observed when sodium efflux is maximally activated by potassium ions. The inhibition of the potassium-activated sodium efflux by external sodium ions is of the competitive type. Reducing the external sodium ion concentration displaces the plots of sodium extrusion rate vs. [K]o to the left and upwards.  相似文献   

20.
(1) The specificity of d-[6-3H]glucose influx by a Na+-dependent and phlorizin-sensitive transport system in the apical epidermal membrane of the polychaete worm, Nereis diversicolor, was investigated in vivo. (2) The inhibitory effect of eleven d-glucose analogues on d-[6-3H]glucose influx from a 5 μM external concentration was recorded. The inhibitors (each tested at 5, 50, 500 and 5000 μM) were selected to illuminate the configurational requirements for interaction with the d-glucose transport system. (3) The following compounds were found to be significant inhibitors: methyl α-d-glucoside, methyl β-d-glucoside, d-galactose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose, d-xylose, myo-inositol, β-d-fructose; the effect was graded according to inhibitor concentration. l-Glucose also inhibited d-glucose influx but to the same extent at all four concentrations tested, suggesting transport site heterogeneity. d-Mannose and l-arabinose did not inhibit influx. (4) The most potent inhibitor, methyl-α-d-glucoside, was itself a substrate, and its transport was inhibited by phlorizin and d-glucose, as well as by substitution of Na+ in the incubation medium with Li+ or choline+. (5) We conclude that the specificity of the Na+-dependent d-glucose transporter in the apical epidermal membrane of Nereis is similar to that in the apical membrane of vertebrate small intestinal and proximal tubular epithelium, and in the tapeworm integument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号