共查询到20条相似文献,搜索用时 15 毫秒
1.
The proton ejection coupled to electron flow from succinate and/or endogenous substrate(s) to cytochrome c using the impermeable electron acceptor ferricyanide is studied in tightly coupled mitochondria isolated from two strains of the yeast Saccharomyces cerevisiae. (1) The observed H+ ejection/2e? ratio approaches an average value of 3 when K+ (in the presence of valinomycin) is used as charge-compensating cation. (2) In the presence of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone, an H+ ejection/2e? ratio of 2 is observed. (3) The low stoichiometry of 3H+ ejected (instead of 4) per 2e? and the high rate of H+ back-decay (0.1615 and a half-time of 4.6 s for 10 mg protein) into the mitochondrial matrix are related to the presence of an electroneutral K+/H+ antiporter which is demonstrated by passive swelling experiments in isotonic potassium acetate medium. 相似文献
2.
Jürgen Eckel Hans Reinauer 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,629(3):510-521
Adult rat heart muscle cells obtained by perfusion of the heart with collagenase have been used to characterize the insulin receptors by equilibrium binding and kinetic measurements. Binding of 125I-labelled insulin to heart cells exhibited a high degree of specificity; it was dependent on pH and temperature, binding at steady increased with decreasing temperatures. About 70% of the radioactivity bound at equilibrium at 25°C could be dissociated by addition of an excess of unlabelled insulin. 54 and 40% of 125I-labelled insulin was degraded by isolated heart cells after 2 h at 37°C and 4 h at 25°C, respectively. This degrading activity was effectively inhibited by high concentration of albumin.Equilibrium binding studies were conducted at 25°C using insulin concentrations ranging from 2.5 · 10?11 mol/l to 10?6 mol/l. Scatchard analysis of the binding data resulted in a curvilinear plot (concave upward), which was further analyzed using the average affinity profile. The empty site affinity constant was calculated to be 9.5 · 107 l/mol with a total receptor concentration of 3.4 · 106 sites per cell.The presence of site-site interactions of the negative cooperative type among the insulin receptors has been confirmed by kinetic experiments. The rate of dilution induced dissociation was enhanced in the presence of native insulin (5 · 10?9 mol/l), both, under conditions of low and high fractional saturation of receptors. 相似文献
3.
Classical fractionation studies showed that chicken liver contains two enzymes which can oxidize DL-3-hydroxybutyrate. The cytosolic enzyme is specific for the L-(+) isomer and accounts for 60% of the total activity. The mitochondrial activity is specific for the D-(?) isomer and accounts for 40% of the total activity. Kinetic studies showed that L-gulonic acid is a competitive inhibitor of the enzyme. We conclude that the cytosolic enzyme is the previously described L-3-hydroxyacid dehydrogenase. 相似文献
4.
Robert E. Corin F.Carter Bancroft Martin Sonenberg David B. Donner 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1983,762(4):503-511
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37°C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37°C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37°C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37°C, 80% of the cell-bound radioactivity was not extractable from GH3 cells with acetic acid. 相似文献
5.
Anthocyanin pigments within Tulipa petal vacuoles provide the means for real-time spectrophotometric monitoring of vacuolar sap pH and for studying ATP-dependent proton transport in isolated, intact vacuoles. Spectra of petal extracts were used to select empirically those wavelengths giving an approximately linear variation in anthocyanin absorbance with pH over a pH range of interest. A sensitive single-beam spectrophotometer with vertical optics was used to minitor absorbance changes of intact, settled vacuoles. Substrates and inhibitors of vacuolar ATPase (Lin, W., Wagner, G.J., Siegelman, H.W. and Hind, Q. (1977) Biochim. Biophys. Acta 465, 110–117) were added to probe proton transport. Acidification of the vacuole sap occurred following addition of MgATP, but not CaATP. Proton accumulation was inhibited by 10 μM Dio 9, an inhibitor of tonoplast ATPase in vitro, and the proton gradient established by addition of MgATP was dissipated after addition of 10 μM CCCP. No pumping response was observed with intact protoplasts. Potential differences across the tonoplast were directly measured by impaling vacuoles with glass microelectrodes. Potential differences of 10–20 mV (inside positive) were recorded when vacuoles were suspended in 0.7 M mannitol/10 mM Hepes buffer (adjusted to pH 8.0 with KOH), and 0.5 mM dithiothreitol. Addition of MgATP increased the potential difference by 2–5 mV. 相似文献
6.
Ole Sonne Ian A. Simpson 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1984,804(4):404-413
The time-course and insulin concentration dependency of internalization of insulin and its receptor have been examined in isolated rat adipose cells at 37°C. The internalization of insulin was assessed by examining the subcellular distribution of cell-associated [125I]insulin among plasma membrane, and high-density (endoplasmic reticulum-enriched) and low-density (Golgi-enriched) microsomal membrane fractions prepared by differential ultracentrifugation. The distribution of receptors was measured by the steady-state exchange binding of fresh [125I]insulin to these same membrane fractions. At 37°C, insulin binding to intact cells is accompanied initially by the rapid appearance of intact insulin in the plasma membrane fraction, and subsequently, by its rapid appearance in both the high-density and low-density microsomal membrane fractions. An apparent steady-state distribution of insulin per mg of membrane protein among these subcellular fractions is achieved within 30 min in a ratio of 1:1.54:0.80, respectively. Concomitantly, insulin binding to intact cells is associated with the rapid disappearance of approx. 30% of the insulin receptors initially present in the plasma membrane fraction and appearance of 20–30% of those lost in the low-density microsomal membrane fraction. However, the number of receptors in the high-density microsomal membrane fraction does not change. This redistribution of receptors also appears to reach a steady-state within 30 min. Both processes are insulin concentration-dependent, correlating with receptor occupancy in the intact cell, and are partially inhibited at 16°C. While the steady-state subcellular distributions of insulin and its receptor do not correlate with that of acid phosphatase, chloroquine markedly increases the levels of insulin associated with all three membrane fractions in apparent proportion to the distribution of this lysosomal marker enzyme activity, without more than marginally potentiating insulin's effects on the distribution of receptors. These results demonstrate that insulin, initially bound to the plasma membrane of the isolated rat adipose cell, is rapidly translocated by a receptor-mediated process into at least two intracellular compartments associated with the cell's high- and low-density microsomes. Furthermore, insulin simultaneously induces the translocation of its own receptor from the plasma membrane into the latter compartment. These translocations appear to represent the internalization and partial dissociation of the insulin-receptor complex through insulin-induced receptor cycling. 相似文献
7.
G.J.M.J. Horbach H.M.G. Princen M. Van Der Kroef C.F.A. Van Bezooijen S.H. Yap 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1984,783(1):60-66
To investigate the regulation of age-related changes in albumin synthesis in the rat liver, total postnuclear RNA and polyribosomes, both membrane-bound and free, were prepared from livers of rats of different ages. By the use of a specific complementary DNA probe, the albumin mRNA sequence content was quantitated in these RNA fractions. These studies showed a specific increase in albumin mRNA sequence content in total postnuclear RNA and membrane-bound polyribosomes at between 12 and 24 months of age. Between 24 and 36 months of age, the increase in the amount of albumin mRNA in these two fractions was due only to an increase in liver weight. The increase in albumin mRNA sequence content was not found in the poly(A)+ fraction but in the RNA extracted from the void of oligo(dT)-cellulose column chromatography. The isolated polyribosomes were translated in a cell-free system to assess age-related changes in total protein and albumin synthesis due to translational control. No changes with age were found in the translational capacity of membrane-bound and free polyribosomes per RNA unit. Immunoprecipitation of the synthesized albumin in the translation products revealed that albumin synthesis in the cell-free system is not increased proportionally with the elevated albumin mRNA level between 12 and 24 months of age. This indicates that albumin mRNAs present in the livers of old rats are biologically less active than those found in younger animals. 相似文献
8.
Robert V. Farese John L. Orchard Ronald E. Larson Mohammad A. Sabir John S. Davis 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1985,846(2):296-304
Rat pancreatic fragments and acinar preparations were incubated in vitro to characterize further the changes in phosphoinositide metabolism that occur during secretagogue action. Two distinct responses were discernible. The first response, most notably involving a decrease in phosphatidylinositol content, was (a) observed at lower carbachol concentrations in dose-response studies, (b) inhibited by incubation in Ca2+-free media containing 1 mM EGTA, (c) associated with increases in inositol monophosphate production, and (d) provoked by all tissue secretagogues (carbachol, cholecystokinin, secretin, insulin, dibutyryl cAMP and the ionophore A23187), regardless of whether their mechanism of action primarily involved Ca2+ mobilization or cAMP generation. This decrease in phosphatidylinositol content was at least partly due to phospholipase C (and/or D) activation, as evidenced by the increase in inositol monophosphate. The second response, most notably involving markedly increased incorporation of 32PO4 into phosphatidic acid and phosphatidylinositol, was (a) observed at higher carbachol concentrations, (b) not influenced by incubation in Ca2+-free media containing 1 mM EGTA, and (c) associated with increases in inositol triphosphate production. This 32PO4 turnover response was probably largely the result of phospholipase C-mediated hydrolysis of phosphatidylinositol 4′,5′-diphosphate, which, as shown previously, also occurs at higher carbachol concentrations and is insensitive to comparable EGTA-induced Ca2+ deficiency. This phosphatidylinositol 4′,5′-diphosphate hydrolysis response was only observed in the action of agents (carbachol and cholecystokinin) which mobilize Ca2+ via activation of cell surface receptors. The present results indicate that phosphatidylinositol and phosphatidylinositol 4′,5′-diphosphate hydrolysis are truly separable responses to secretagogues acting in the rat pancreas. Furthermore, phosphatidylinositol 4′,5′-diphosphate, rather than phosphatidylinositol hydrolysis is more likely to be associated with receptor activation and Ca2+ mobilization. 相似文献
9.
The lack of insulin mimetic or antagonistic effects of methyl-α-d-mannoside in iso-osmolar solutions
Edward W. Lipkin Christoph de Haën 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,721(2):119-123
Transduction of insulin binding into metabolic control in isolated rat adipocytes apparently requires intact cell surface carbohydrate. The ability of certain lectins and some glycosides to mimic and/or inhibit the actions of insulin has been cited as evidence supporting the hypothesis that a concanavalin A-like binding site on fat cells is crucial to this function. Such a binding site could explain the stimulation by methyl-α-d-mannoside of glucose oxidation or its ability to antagonize the effect of insulin on lipolysis. The present study corroborated these effects of methyl-α-d-mannoside in hyperosmolar medium, but shows that the effects vanish when osmolarity is maintained within physiological limits. Osmolarity alone could not explain all of the complex effects observed, but it can be concluded that earlier data suggesting methyl-α-d-mannoside mimics or antagonizes the actions of insulin cannot be used to support the above hypothesis. 相似文献
10.
11.
An axolemma-rich membrane vesicle fraction was prepared from the leg nerve of the lobster, Homerus americanus. In this preparation Ca2+ transport across the membrane was shown to require a Na+ gradient (Na+-Ca2+ exchange), and external K+ was found to facilitate this Na+-Ca2+ exchange activity. In addition, at high Ca2+ concentrations (20 mM) a Ca2+-Ca2+ exchange system was shown to operate, which is stimulated by Li+. The Na+-Ca2+ exchange system is capable of operating in the reverse direction, with Ca2+ uptake coupled with Na+ efflux. Such a vesicular preparation has the potential for providing useful experimental approaches to study the mechanism of this important Ca2+ extrusion system in the nervous system. 相似文献
12.
The question addressed in the title was examined by measuring fluorescence emission spectra and light-induced fluorescence-yield changes of chloroplasts which had been frozen to ?196 °C rapidly, as very thin samples adsorbed into substrates which were plunged directly into liquid nitrogen, or slowly by the cooling action of liquid nitrogen through the wall of the cuvette. Contrary to previous reports, we found that the rate of cooling had no influence on the shape of the emission spectrum, the extent of the variable fluorescence or the fraction of the absorbed quanta which are delivered initially to Photosystem I. 相似文献
13.
During perifusion with medium deprived of Ca2+, addition of glucose or omission of Na+ resulted in prompt and quantitatively similar inhibitions of 45Ca efflux from β-cell rich pancreatic islets microdissected from ob / ob mice. Glucose had no additional inhibitory effect when Na+ was isoosmotically replaced by sucrose or choline+. When K+ was used as a substitute for Na+, the inhibitory effect of Na+ removal on 45Ca efflux became additive to that of glucose. The observation that glucose can be equally effective in inhibiting 45Ca efflux in the presence or absence of Na+ is difficult to reconcile with the postulate that the Na+-Ca2+ countertransport mechanism is a primary site of action for glucose. 相似文献
14.
Target sizes of the renal sodium-d-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at ?50°C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent d-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4–4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 ± 38 000. From the tracer exchange experiments a molecular weight of 345 000 ± 24 500 was calculated for the d-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and γ-glutamyltransferase, whose target sizes were found to be 68 570 ± 2670 and 73 500 ± 2270, respectively. These findings provide further evidence for the assumption that the sodium-d-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and d-glucose translocation. 相似文献
15.
Michel Desilets Magda Horackova 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,721(2):144-157
We developed a technique that yields isolated adult rat myocytes, 70% of which are elongated and morphologically similar to intact tissue. Electrophysiological studies showed most of these cells were quiescent, Ca2+-tolerant and exhibited normal action potentials accompanied by contractions. We analyzed 45Ca2+ uptake data in terms of instantaneous, fast and slow compartments. 69% of total exchangeable Ca2+ was found in the slow compartment; the rest was almost equally divided between the instantaneous and fast compartments. Replacement of extracellular Na+ by Li+ or Tris increased 45Ca2+ uptake by the fast compartment; high [K+]o increased this uptake further. These increases appeared to be related also to internal concentrations of Na+. This conclusion was supported by experiments with digitonin-treated cells. Our results indicate that the way Na+-dependent 45Ca2+ uptake is affected by [Na+]o, [Na+]i and [K+]o is compatible with the Na+-Ca2+ exchange mechanism. Our preparation should prove useful in studies of regulation of Ca2+ transport in cardiac muscles. 相似文献
16.
Rauno J. Harvima E. Olavi Kajander Ilkka T. Harvima Jorma E. Fraki 《Biochimica et Biophysica Acta (BBA)/General Subjects》1985,841(1):42-49
Histamine-N-methyltransferase (EC 2.1.1.8) was purified 1700-fold with a yield of 9% from rat kidney. Purification included ammonium sulfate precipitation, linear gradient DEAE-cellulose chromotography and S-adenosylhomocysteine affinity chromotography. The purified enzyme preparation showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of 35 000. The isoelectric point of the enzyme was at pH 5.2. The purified enzyme preparation did not contain detectable amounts of histamine. The purified enzyme was totally inhibited in 100 μM parahydroxymercuric benzoate and in 10 μM iodoacetamide, and it was found to be stabilized with dithiothreitol (1 mM), suggesting that the enzyme has an SH-group in the active center. The Km values for histamine and S-adenosylmethionine were 6.0 and 7.1 μM, respectively. 50% inhibition of histamine-N-methyltransferase was obtained at 28 μM S-adenosylhomocysteine and 100 μM methylhistamine. The purified enzyme was slightly inhibited in 1 mM methylthioadenosine. Histamine in concentrations higher than 25 μM caused substrate inhibition. 相似文献
17.
Margareta Wandel Trond Berg Winnie Eskild Kaare R. Norum 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1982,721(4):469-477
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation. 相似文献
18.
Electron paramagnetic resonance (EPR) spectra were recorded of whole filaments of the cyanobacteria Nostoc muscorum and Anabaena cylindrica. Signals due to manganese were removed by freezing and thawing the cells in EDTA. EPR spectra were assigned on the basis of their g values, linewidths, temperature dependence and response to dithionite and light treatments. The principal components identified were: (i) rhombic Fe3+ (signal at g = 4.3), probably a soluble storage form of iron; (ii) iron-sulfur centers A and B of Photosystem I; (iii) the photochemical electron acceptor ‘X’ of Photosystem I; this component was also observed for the first time in isolated heterocysts; (iv) soluble ferredoxin which was present at a concentration of 1 molecule per 140 ± 20 chlorophyll molecules; (v) a membrane-bound iron-sulfur protein (g = 1.92). A signal g = 6 in the oxidized state was probably due to an unidentified heme compound. During deprivation of iron the rhombic Fe3+, centers A, B and X of Photosystem I, and soluble ferredoxin were all observed to decrease. 相似文献
19.
J.R. Whittaker 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,583(3):378-387
Short-term synthesis of radioactivity labeled melanin (using dl-[2-14C]tyrosine or 2-[2-14C]thiouracil) by chick retinal pigment tissues in vitro was not influenced by inhibitors of protein synthesis, puromycin and cyloheximide. Co-ordinate synthesis of protein is, therefore, unnecessary for melanin synthesis, and melanoproteins must represent secondary interactions between melanin and protein. Melanin was isolated from chick embryo feather germs by extracting the proteins with hot dodecyl sulfate/mercaptoethanol. Melanin isolated from tissues incubated previously in l-[U-14C]valine medium had no associated radioactivity compared to the radioactivity of melanin prepared from tissues incubated in dl-[2-14C]tyrosine or 2-[2-14C]thiouracil. If melanoproteins exist at all, they are non-covalently bonded associations of melanin and melanosomal proteins. 相似文献
20.
Edward S. Cole Jonathan Glass 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1983,762(1):102-110
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis. 相似文献