首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-molecular DNA from chicken erythrocytes interacts with 1,2-dipalmitoylphosphatidylcholine in unilamellar liposomes, both in the presence and absence of Mg2+ ions. This interaction results in a phase separation in liposome membranes. The new phase induced by DNA and Mg2+ has a higher gel-liquid crystal phase transition temperature as measured by microcalorimetry. In the liquid crystalline state, the 16- and 5-doxyl stearic acid spin labels indicate changed local bilayer properties at the label position in the new phase.  相似文献   

2.
By employing diphenylhexatriene steady-state fluorescence anisotropy, pyrenedecanoic acid excimer formation, and high sensitivity scanning calorimetry we have demonstrated that the liposomes containing phosphatidylethanolamine (PE) and various mole fractions of ganglioside GD1a had a gel-liquid crystalline phase transition between 15 and 25 degrees C. Calorimetric measurements indicated that these phase transitions were broad and centered between 17 and 21 degrees C. The enthalpy change of the transition was linearly dependent on the ganglioside concentration up to 10.0 mol% and plateaued between 11.4-16.2 mol%. The high enthalpy change (37 kcal/mol of GD1a added into the PE bilayer) indicates the existence of PE-GD1a complex structure in the liposomal membrane. It is proposed that semi-fluid domains containing six PE and one ganglioside molecule are present in the PE-GD1a membranes at temperatures above gel-liquid crystalline phase transition. The Sendai virus induced leakage of PE-GD1a liposomes has been investigated by using an entrapped, self-quenching fluorescent dye, calcein. The leakage rate was dependent on the mole fraction of ganglioside GD1a and was maximal at 6.3 mol%. Arrhenius plots of the leakage rates showed breaks in the 20-25 degrees C temperature range, which correspond to the gel-liquid crystalline phase transition of the target liposomes. These data suggest that the rate of Sendai virus-induced leakage can be regulated via fluidity modulation by changing the PE to GD1a ratio at constant temperatures.  相似文献   

3.
The behavior of phosphatidylethanolamine (PE) liposomes has been studied as a function of temperature, pH, ionic strength, lipid concentration, liposome size, and divalent cation concentration by differential scanning calorimetry (DSC), by light scattering, by assays measuring liposomal lipid mixing, contents mixing, and contents leakage, and by a new fluorometric assay for hexagonal (HII) transitions. Liposomes were either small or large unilamellar, or multilamellar. Stable (impermeable, nonaggregating) liposomes of egg PE (EPE) could be formed in isotonic saline (NaCl) only at high pH (greater than 8) or at lower pH in the presence of low ionic strength saline (less than 50 mOsm). Bilayer to hexagonal (HII) phase transitions and gel to liquid-crystalline transitions of centrifuged multilamellar liposomes were both detectable by DSC only at pH 7.4 and below. The HII transition temperature increased, and the transition enthalpy decreased, as the pH was raised above 7.4, and it disappeared above pH 8.3 where PE is sufficiently negatively charged. HII transitions could be detected at high pH following the addition of Ca2+ or Mg2+. No changes in light scattering and no lipid mixing, mixing of contents, or leakage of contents were noted for EPE liposomes under nonaggregating conditions (pH 9.2 and 100 mM Na+ or pH 7.4 and 5 mM Na+) as the temperature was raised through the HII transition region. However, when aggregation of the liposomes was induced by addition of Ca2+ or Mg2+, or by increasing [Na+], it produced sharp increases in light scattering and in leakage of contents and also changes in fluorescent probe behavior in the region of the HII transition temperature (TH). Lipid mixing and contents mixing were also observed below TH under conditions where liposomes were induced to aggregate, but without any appreciable leakage of contents. We conclude that HII transitions do not occur in liposomes under conditions where intermembrane contacts do not take place. Moreover, fusion of PE liposomes at a temperature below TH can be triggered by H+, Na+, Ca2+, or Mg2+ or by centrifugation under conditions that induce membrane contact. There was no evidence for the participation of HII transitions in these fusion events.  相似文献   

4.
Vlasov AP  Kisel' MA  Shalyro OI 《Biofizika》2000,45(4):666-670
Thermotropic behavior of liposomes exposed to gamma-radiation was studied by differential scanning microcalorimetry. It was found that the peak corresponding to the gel-liquid crystal transition for liposomes composed of bovine brain sphingomyelin and dipalmitoyl phosphatidylglycerol broadened and shifted toward the high-temperature region. No effect of irradiation on dipalmitoyl phosphatidylcholine liposomes was observed. Previously it was shown that, on exposure to gamma-rays, sphingomyelin and phosphatidylglycerol, as opposed to phosphatidylcholine, broke down into fragments of lower molecular weight. It is concluded that the accumulation of products of phospholipid fragmentation in the membrane results in the changes of phase transition parameters.  相似文献   

5.
The specific ultrasonic absorption coefficient per wavelength as a function of temperature in the vicinity of the phase transition of liposomes, composed of a 4:1 mixture of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), of different sizes was determined using an acoustic interferometer. Small unilamellar vesicles (SUV) and multilamellar vesicles (MLV) yielded results similar to those in the literature, viz., an absorption maximum at the transition temperature. Seven intermediate sizes including several size distributions of large unilamellar vesicles (LUV) were studied, yielding information on size dependencies of the temperatures at which the peaks occur, the widths at half peak amplitude, and the peak amplitudes. All liposome sizes except the SUV exhibited approximately the same transition temperature as did the largest MLV. The widths of the peaks were inversely related to liposome size, with a strong dependence for the smallest vesicles and an approach to independence for the largest vesicles. The amplitudes of the peaks exhibited a general increase with size with two exceptions, viz., the SUV and the vesicles with average diameters of 90-100 nm. It was also found that the membrane permeability increased near the transition temperature. The temperature dependencies of ultrasonic absorption and membrane permeability are compared.  相似文献   

6.
The shift in the gel-liquid crystal phase transition temperature (tm) of dipalmitoylphosphatidylcholine liposomes induced by incorporation of 10 mol% palmitic acid, was measured by 90 degrees light scattering at different bulk pH values. It has been found that the tm shift decreases sigmoidally from 4.7 to -0.3 degrees C as the bulk pH is raised from 5 to 11. Since it is in this range that the carboxyl group of a membrane-bound fatty acid should ionize, our results can be interpreted to mean that there is relationship between the tm shift and the degree of dissociation of palmitic acid, the uncharged fatty acid increasing tm and its conjugate, anionic form, slightly decreasing the transition temperature of dipalmitoylphosphatidylcholine liposomes. The experimental results are fitted by a modified form of the Henderson-Hasselbach equilibrium expression which takes into account the effect of the anionic fatty acid on the surface potential and hence, on the surface pH of liposomes, according to Gouy-Chapman and Boltzmann equations, respectively. Best fit between theory and experiments is found when the intrinsic interfacial pK of palmitic acid is set equal to 7.7. This high pK value can be explained as due to the effect of the lower dielectric constant of the interfacial region, as compared to bulk water, on the acid-base dissociation of the carboxyl group. The results presented here show that upon incorporation of palmitic acid, the phase transition of dipalmitoylphosphatidylcholine bilayers becomes extremely sensitive to changes of pH in the vicinity of the physiological range. This property is not shown by the pure phospholipid bilayers in the same pH range.  相似文献   

7.
The effect of lipid composition of liposomes on peroxidation induced by ferrous ion and ascorbate was examined. Temperature affects the sensitivity of liposomes; the peroxidation rate was increased with increase of the incubation temperature. With liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine (substrate) and a peroxidation-insensitive lipid, 1-palmitoyl-2-oleoyl phosphatidylcholine, peroxidation was dependent on the density of the substrate. No appreciable peroxidation was observed with liposomes containing less than 10 mol% of the substrate at 37 degrees C. When 1 mol substrate was mixed with 9 mol dimyristoyl phosphatidylcholine, peroxidation occurred below 10 degrees C, but not above 20 degrees C. Above 20 degrees C, the substrates should be located homogeneously on the membranes, whereas they should be clustered below 10 degrees C, since the gel-liquid crystalline phase transition temperature of matrix membrane of dimyristoylphosphatidylcholine was 17-21 degrees C. Peroxidation of liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine was also suppressed by cholesterol. These findings indicate that the lateral distribution as well as the density of the substrate on membranes affects the sensitivity of the substrate to peroxidation. It was also found that alpha-tocopherol is preferentially located in the 1-palmitoyl-2-arachidonyl phosphatidylcholine-rich regions of membranes consisting of mixed phospholipids, and efficiently suppresses peroxidation of liposomal lipids.  相似文献   

8.
Sonication is a simple method for reducing the size of liposomes. We report the size distributions of liposomes as a function of sonication time using three different techniques. Liposomes, mildly sonicated for just 30 sec, had bimodal distributions when surface-weighted with modes at about 140 and 750 nm. With extended sonication, the size distribution remains bimodal but the average diameter of each population decreases and the smaller population becomes more numerous. Independent measurements of liposome size using Dynamic Light Scattering (DLS), transmission electron microscopy (TEM), and the nystatin/ergosterol fusion assay all gave consistent results. The bimodal distribution (even when number-weighted) differs from the Weibull distribution commonly observed for liposomes sonicated at high powers over long periods of time and suggests that a different mechanism may be involved in mild sonication. The observations are consistent with the following mechanism for decreasing liposome size. During ultrasonic irradiation, cavitation, caused by oscillating microbubbles, produces shear fields. Large liposomes that enter these fields form long tube-like appendages that can pinch-off into smaller liposomes. This proposed mechanism is consistent with colloidal theory and the observed behavior of liposomes in shear fields.  相似文献   

9.
Abstract

The thermodynamic phase behavior and lipid-membrane structure of fully hydrated uni- and multilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC) surface-modified by a glycosphingolipid, sulfogalactosylceramide (sulfatide), have been investigated by means of differential scanning calorimetry and fluorescence polarization spectroscopy. The calorimetric and spectroscopic scans of the two-component liposomes demonstrate a distinct influence of increasing amounts of sulfatide on the lipidmembrane thermodynamics. This is manifested as a broad gel-fluid phasecoexistence region and a low-temperature two-phase region composed of highly ordered lipids. In addition, the pre-transition is abolished for small concentrations of sulfatide. A well-defined heat capacity peak, reflecting a thermotropic chain melting transition is observed for liposomes composed of pure sulfatide. On basis of the calorimetric and spectroscopic data a phase diagram has been established in the full temperature and composition plane. Dynamic light scattering measurements of liposome sizes reveal that the incorporation of sulfatide into the DPPC membrane matrix leads to a stabilization of the characteristic size of the extruded liposomes. Furthermore, incubation with insulin does not affect the liposome size and the aggregational behavior of the two-component sulfatide-DPPC liposomes. In accordance with this, the heat capacity curves demonstrate an insignificant influence on both the lipid membrane phase behavior and the thermal unfolding characteristics of insulin.  相似文献   

10.
Sonication is a simple method for reducing the size of liposomes. We report the size distributions of liposomes as a function of sonication time using three different techniques. Liposomes, mildly sonicated for just 30 sec, had bimodal distributions when surface-weighted with modes at about 140 and 750 nm. With extended sonication, the size distribution remains bimodal but the average diameter of each population decreases and the smaller population becomes more numerous. Independent measurements of liposome size using Dynamic Light Scattering (DLS), transmission electron microscopy (TEM), and the nystatin/ergosterol fusion assay all gave consistent results. The bimodal distribution (even when number-weighted) differs from the Weibull distribution commonly observed for liposomes sonicated at high powers over long periods of time and suggests that a different mechanism may be involved in mild sonication. The observations are consistent with the following mechanism for decreasing liposome size. During ultrasonic irradiation, cavitation, caused by oscillating microbubbles, produces shear fields. Large liposomes that enter these fields form long tube-like appendages that can pinch-off into smaller liposomes. This proposed mechanism is consistent with colloidal theory and the observed behavior of liposomes in shear fields.  相似文献   

11.
We have prepared liposomes from mannosylated phosphatidylmyo-inositol, derived from mycobacteria, and cholesterol. The size of the particles so formed could be controlled by membrane filtration. The vesicles encapsulated a significant amount of aqueous phase (about 8 microliter per mg phospholipid). Markers of the liposomal membrane and aqueous phase rapidly associated with mouse peritoneal macrophages and, more slowly, with rat alveolar macrophages. The uptake was saturable at high liposome concentrations, although phagocytosis of latex particles of the same mean diameter was not saturable at these concentrations. An excess of unlabelled liposomes composed of phosphatidylcholine and phosphatidylserine, which were also taken up readily by macrophages, did not inhibit the uptake of mannosylated liposomes. The uptake of fluorescent mannosylated bovine serum albumin was inhibited by these liposomes, suggesting a specific interaction with the macrophage mannose-fucose receptor. We conclude that this type of liposome would be useful for the delivery of immunomodulators to reticuloendothelial cells.  相似文献   

12.
By employing diphenylhexatriene steady-state fluorescence anisotropy, pyrenedecanoic acid excimer formation, and high sensitivity scanning calorimetry we have demonstrated that the liposomes containing phosphatidylethanolamine (PE) and various mole fractions of ganglioside GD1a had a gel-liquid crystalline phase transition between 15 and 25° C. Calorimetric measurements indicated that these phase transitions were broad and centered between 17 and 21° C. The enthalpy change of the transition was linearly dependent on the ganglioside concentration up to 10.0 mol% and plateaued between 11.4–16.2 mol%. The high enthalpy change (37 kcal/mol of GD1a added into the PE bilayer) indicates the existence of PE-GD1a complex structure in the liposomal membrane. It is proposed that semi-fluid domains containing six PE and one ganglioside molecule are present in the PE-GD1a membranes at temperatures above gel-liquid crystalline phase transition. The Sendai virus induced leakage of PE-GD1a liposomes has been investigated by using an entrapped, self-quenching fluorescent dye, calcein. The leakage rate was dependent on the mole fraction of ganglioside GD1a and was maximal at 6.3 mol%. Arrhenius plots of the leakage rates showed breaks in the 20–25° C temperature range, which correspond to the gel-liquid crystalline phase transition of the target liposomes. These data suggest that the rate of Sendai virus-induced leakage can be regulated via fluidity modulation by changing the PE to GD1a ratio at constant temperatures.  相似文献   

13.
Unilamellar liposomes were formed by controlled detergent dialysis of mixed micelles consisting of acetone-insoluble total polar lipids extracted from various methanogens and the detergent n-octyl-beta-D-glucopyranoside. The final liposome populations were studied by dynamic light scattering and electron microscopy. Unilamellar liposomes with mean diameters smaller than 100 nm were obtained with lipid extracts of Methanococcus voltae, Methanosarcina mazei, Methanosaeta concilii, and Methanococcus jannaschii (grown at 50 degrees C), whereas larger (greater than 100-nm) unilamellar liposomes were obtained with lipid extracts of M. jannaschii grown at 65 degrees C. These liposomes were shown to be closed intact vesicles capable of retaining entrapped [14C]sucrose for extended periods of time. With the exception of Methanospirillum hungatei liposomes, all size distributions of the different liposome populations were fairly homogeneous.  相似文献   

14.
A group of circular dichroism (CD) active phospholipids has been synthesised, in which one or both acyl chains has been replaced with a cinnamoyl or azobenzene chromophore-containing acid. Studies on the structure, CD activity and thermodynamic property of liposome membranes composed of CD active phospholipids were carried out. CD active liposomes were found to be stable, normal liposomes of approximately 550 A diameter based on the electron micrograph and dynamic light scattering, and to have thermodynamic property similar to the conventional phospholipid membranes without serious perturbation by aromatic bulk groups based on DSC. Liposomes composed of phospholipid having two trans-azobenzene chromophores showed an extremely large CD enhancement even well above Tc. This CD enhancement was drastically changed by the presence of cis-azobenzene chromophore and cis-cis isomer content after irradiation was higher than the theoretical value, suggesting the importance of interchromophore interaction in the liposome membranes.  相似文献   

15.
Vitrified synthetic phosphatidycholine liposome suspensions were studied by cryo-electron microscopy. The bilayer structure is resolved on vitrified liposome images. The packing of the aliphatic chains of the lipid within vitrified liposomes can be determined by the analysis of electron diffraction patterns. Images and electron diffraction patterns show that the structure of vitrified liposomes is related to the structure that liposomes have before vitrification. In fact, vitrified liposomes have a different structure, depending whether they are maintained before cooling at a temperature higher or lower than that corresponding to the ‘melting’ of the hydrocarbon chain of the lipids. Below the melting temperature, liposomes are formed by small domains.  相似文献   

16.
The dependence of electrophoretic mobility of multilamellar liposomes composed of egg phosphatidylcholine (PtdCho), dimyristoyl-glycerophosphocholine (Myr2Gro-P-Cho) and dipalmitoyl-glycerophosphocholine (Pam2-Gro-P-Cho) on the concentration of several cations and anions has been measured. Values of surface densities of binding sites and intrinsic binding constants of ions to liposome membranes were determined by processing the results in the framework of Gouy-Stern theory. Sharp reductions in the positive surface potential of Myr2Gro-P-Cho and Pam2Gro-P-Cho liposomes have been detected at the thermotropic transition of the lipids from the gel to liquid-crystalline phase. Similar alterations of liposome surface potential were revealed at the temperature of pretransition, as well as at about 50 degrees C, in the case of Pam2Gro-P-Cho. A model is suggested for ion binding to PtdCho membranes, according to which the ion-binding sites are considered as point defects (vacancies) in the structure of lipid head-groups arranged over a trigonal lattice.  相似文献   

17.
The intensity of pyrene excimer fluorescence in human erythrocyte membranes and in sonicated dispersions of the membrane lipid (liposomes) was examined as a function of pressure (1–2080 bar) and temperature (5–40°C). Higher pressure or lower temperature decreased the excimer/monomer intensity ratios. A thermotropic transition was detected in both membranes and liposomes by plots of the logarithm of the excimer/monomer intensity ratio versus 1/K. The transition temperature of the membranes was 19–21°C at 1 bar and 28–31°C at 450 bar, a shift with pressure of approx. 20–22 K per kbar. Corresponding transition temperatures of the liposomes were 21°C at 1 bar and 33°C at 450 bar, a shift of approx. 27 K per kbar. The observed pressure dependence of the thermotropic transition temperature is similar to that reported for phospholipid bilayers and greatly exceeds that of protein conformation changes. In concert with the liposome studies the results provide direct evidence for a lipid transition in the erythrocyte membrane.  相似文献   

18.
The correlation between the mechanical property and the thermotropic transition of the phospholipid bilayer has been recently demonstrated (Chem. Phys. Lipids 110 (2001) 27). However, the role of thermal induced mechanical responses of phospholipid bilayer on the contact mechanics of liposome adhering on a cationic substrate has not been determined. In this study, confocal-reflectance interference contrast microscopy, phase contrast microscopy and contact mechanics modeling are applied to probe the adhesion mechanisms of liposomes in the presence of electrostatic interactions during the thermotropic transition of the lipid bilayer. When temperature increases from 23 to 49 °C at pH 7.4, the degree of liposome deformation (a/R) and adhesion energy of dipalmitoyl-sn-glycero-3-phosphocholine liposome increases by 10% and remains constant, respectively, on 3-amino-propyl-triethoxy-silane (APTES) modified substrate. The extents of increase in these two parameters are highly dependent on the physicochemical properties of the rigid substrate. At pH 4, the adhesion energies above and below the phase transition temperature (Tm) are increased by one order of magnitude due to the formation of the free silanol groups on APTES substrate. In hypotonic condition, the degree of vesicle deformation remains constant and the adhesion energy reduces by 20% during sample heating. Under all conditions, the adhesion energy of the adhering liposome spans a few orders of magnitude against the increase of liposome size as the surface area to volume ratio is maximized in smallest vesicle.  相似文献   

19.
Aging of dry pollen has been shown to coincide with increases of free fatty acids and lysophospholipids. These compounds reduce the integrity of hydrated liposomes made from isolated pollen phospholipids but do not lead to their total destruction. However, a massive, instantaneous leakage occurs upon imbibition of dry cattail pollen (Typha latifolia) that has aged to the point of complete loss of viability. To resolve the apparent discrepancy in stability between hydrated and dry membranes, the lyotropic phase behavior of two liposome systems containing lysophospholipid (12 mol%) was studied with differential scanning calorimetry and Fourier transform infrared spectroscopy. In both systems dehydration caused phase separation of the lipids. Fourier transform infrared data concerning phase behavior of isolated membranes from aging pollen and of membranes in situ did not show phase separations, probably because the assay technique was not sufficiently sensitive to detect them. However, aging of the pollen resulted in a permanent increase in the gel-to-liquid crystalline phase transition temperature (Tm) of isolated membranes and in a broadening of the transition in situ. We conclude that the increase in Tm of hydrated membranes may be more closely related to the leakage.  相似文献   

20.
The permeation of water through liposomal membranes composed of various saturated phosphatidylcholine plus gramicidin A was studied as a function of temperature. 1. The presence of gramicidin in the liposomal bilayers caused an increase in water permeability. Below the phase transition temperature this effect could be measured quite clearly in all the systems we tested, but the extent of the increase was largely dependent on the length of the hydrocarbon chains. 2. Increasing amounts of gramicidin caused a gradual disappearance of the abrupt change in the rate of water permeation near the gel-liquid crystalline phase transition temperature of dipalmitoyl phosphatidylcholine liposomes. Differential scanning calorimetry analysis of the system containing these relatively small amounts of gramicidin still showed a clear transition from the liquid crystalline to the gel state with only a slight reduction in the enthalpy change. 3. In liposomes composed of dimyristoyl, dipalmitoyl and saturated egg phosphatidylcholine there was a concomitant decrease in the activation energy of water permeation in the presence of gramicidin below and above the phase transition temperature. The activation energy for water permeation through longer chained distearoyl phosphatidylcholine liposomal bilayers was the same with or without gramicidin in the bilayer. 4. It is concluded that the ability of gramicidin to form conducting channels in a gel state bilayer depends on the thickness of the paraffin core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号