首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Yasusi Yamamoto  Bacon Ke 《BBA》1980,592(2):296-302
Fluorescence characteristics of Photosystem-II subchloroplasts (TSF-II and TSF-IIa) fractionated by Triton X-100 treatment were studied in relation to cation-induced regulation of excitation-energy distribution within subchloroplast fragments. Absorption spectra and fluorescence-emission spectra at 77 K showed that TSF-II contains the light-harvesting chlorophyll-protein complex in addition to the reaction-center complex, which is present alone in TSF-IIa.Mg2+ increased the ratio of F695nm to F685nm in the fluorescence-emission spectrum of TSF-II particles at 77 K, but had no effect on TSF-IIa particles. Mg2+ also induced a quenching of chlorophyll fluorescence at room temperature in TSF-II, an effect that was insensitive to the presence of DCMU. The DCMU-insensitive fluorescence quenching was not observed in the TSF-IIa preparation. These results suggest an existence of cation-induced regulation of excitation-energy transfer in TSF-II preparations. Presence of antenna chlorophyll molecules alone does not seem to be sufficient for observing energytransfer regulation by cations in Photosystem-II preparations.  相似文献   

2.
Yasusi Yamamoto  Bacon Ke 《BBA》1981,636(2):175-184
Surface charge density of subchloroplast fragments fractionated from spinach by Triton X-100 treatment was estimated from cation-induced quenching of chlorophyll fluorescence, with the premise that the fluorescence yield is dependent on the surface electric potential of the preparations. Application of the Gouy-Chapman theory of diffuse double layer to the subchloroplast preparations, or treating the surface of the preparations under electric charge regulation conditions yielded a result suggesting the Photosystem II reaction-center preparation (TSF-IIa) to be more negatively charged than the Photosystem I reaction-center preparation (TSF-I). Isoelectric points of the subchloroplast fragments were determined by measuring 90° light scattering and more directly by gel isoelectric focusing. Isoelectric points of TSF-I and -IIa were estimated to be 4.8 and 4.0 from light-scattering experiments, and 4.5 and 4.1 from gel electrophoresis, respectively. The TSF-II preparation that contains both a light-harvesting complex and the reaction-center (core) complex showed a small cation-induced quenching of chlorophyll fluorescence. This fluorescence quenching may be ascribed mostly to the regulation of energy transfer in the preparation (Yamamoto, Y. and Ke, B. (1980) Biochim. Biophys. Acta 592, 296–302). Furthermore, the TSF-II preparation showed a broad and indefinite peak in light scattering in the pH range 3–8, suggesting that the complex probably carries a small amount of charge in this pH range. The physiological role of the membrane surface charge of the subchloroplast preparations in membrane structure and cation regulated processes in chloroplast is discussed.  相似文献   

3.
S. Izawa  R. Kraayenhof  E.K. Ruuge  D. Devault 《BBA》1973,314(3):328-339
Treatment of chloroplasts with high concentrations of KCN inhibits reactions which involve Photosystem I (e.g. electron transport from water or diaminodurene to methylviologen), but not those assumed to by-pass Photosystem I (e.g. electron transport from water to quinonediimides). The spectrophotometric experiments described in this paper showed that KCN inhibits the oxidation of cytochrome f by far-red light without blocking its reduction by red light. Both optical and EPR experiments indicated that KCN does not inhibit the photooxidation of P700 but markedly slows down the subsequent dark decay (reduction). Reduction of P700 by Photosystem II is prevented by KCN. It is concluded that KCN blocks electron transfer between cytochrome f and P700, i.e. the reaction step which is believed to be mediated by plastocyanin. In KCN-poisoned chloroplasts the slow dark reduction of P700 following photooxidation is greatly accelerated by reduced 2,6-dichlorophenolindophenol or by reduced N-methylphenazonium methosulfate (PMS), but not by diaminodurene. It appears that the reduced indophenol dye and reduced PMS are capable of donating electrons directly to P700, at least partially by-passing the KCN block.  相似文献   

4.
An O2-evolving Photosystem II subchloroplast preparation was obtained from spinach chloroplasts, using low concentrations of digitonin and Triton X-100. The preparation showed an O2 evolution activity equivalent to 20% of the uncoupled rate of fresh broken chloroplasts, but had no significant Photosystem-I-dependent O2 uptake activity. The preparation showed a chlorophyll ab ratio of 1.9 and a P-700chlorophyll ratio of 12400. Absorption spectra at room temperature and fluorescence emission spectra of chlorophyll at 77 K suggested a significant decrease in Photosystem I antenna chlorophylls in the O2-evolving Photosystem II preparation.  相似文献   

5.
The effects of magnesium and chloride ions on photosynthetic electron transport were investigated in membrane fragments of a blue-green alga, Nostoc muscorum (Strain 7119), noted for their stability and high rates of electron transport from water or reduced dichlorophenolindophenol to NADP+. Magnesium ions were required not only for light-induced electron transport from water to NADP+ but also for protection in the dark of the integrity of the water-photooxidizing system (Photosystem II). Membrane fragments suspended in the dark in a medium lacking Mg2+ lost the capacity to photoreduce NADP+ with water on subsequent illumination. Chloride ions could substitute, but less effectively, for each of these two effects of magnesium ions. By contrast, the photoreduction of NADP+ by DCIPH2 was independent of Mg2+ (or Cl?) for the protection of the electron transport system in the dark or during the light reaction proper. Furthermore, high concentrations of MgCl2 produced a strong inhibition of NADP+ photoreduction with DCIPH2 without significantly affecting the rate of NADP+ photoreduction with water. The implications of these findings for the differential involvement of Photosystem I and Photosystem II in the photoreduction of NADP+ with different electron donors are discussed.  相似文献   

6.

1. 1. A relaxation spectrophotometer was employed to measure the effects of trypsin treatment on electron transport in both cyclic and non-cyclic chloroplast reactions. The parameters measured were electron flow rate through P700 (flux) and the time constant for dark reduction of P700.

2. 2. In the reduction of methyl viologen by the ascorbate-2,6-dichlorophenol-indophenol (DCIP) donor couple, there was no effect of trypsin on P700 flux or on the time constant for dark reduction of P700. In the phenazine methosulfate (PMS) cyclic system, trypsin had either a slightly stimulatory or slightly inhibitory effect on the P700 flux, depending on the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU): either effect being marginal compared to trypsin effects on Photosystem II.With both ferricyanide and methyl viologen reduction from water, trypsin treament gave a first order decline in P700 flux: which matched the trypsin-induced decline in electron transport with the water to DCIP system, measured by dye reduction. This implies that Photosystem II is inhibited. The inhibition of Photosystem II was up to 90% with a 6–10-min trypsin treatment. This result is consistent with the concept of Photosystem I (P700) being in series with Photosystem II in the electron transfer sequence.

3. 3. Cyclic phosphorylation was severely inhibited (85%) by trypsin treatment which had a somewhat stimulatory effect on P700 flux, indicating uncoupling. Non-cyclic phosphorylation was uncoupled as well as electron flow being inhibited since the P/2e ratio decreased more rapidly as a function of trypsin incubation time than inhibition of electron flow. The two effects, uncoupling and non-cyclic electron flow inhibition, are separate actions of trypsin. It is probably that the uncoupling action of trypsin is due to attack on the coupling factor protein, known to be exposed on the outer surface of thylakoids.

4. 4. Trypsin treatment caused an increase in the rate constant, kd, for the dark H+ efflux, resulting in a decreased steady state level of proton accumulation. The increased proton efflux and the inhibition of phosphorylation are consistent with an uncoupling effect on trypsin.

5. 5. Trypsin treatment did not reduce the manganese content of chloroplasts: as reported by others, Tris washing did remove about 30% of the chloroplast manganese.

6. 6. Electron micrographs of both negatively stained and thin-sectioned preparations showed that, under these conditions, trypsin does not cause a general breakdown of chloroplast lamellae. Inhibition by trypsin must therefore result from attacks on a few specific sites.

7. 7. Both System II inhibition and uncoupling occur rapidly when trypsin treatment is carried out in dilute buffer, a condition which leads to thylakoid unstacking, but both are prevented by the presence of 0.3 M sucrose and 0.1 M KCl, a condition that helps maintain stacked thylakoids. Evidently vulnerability to trypsin requires separation of thylakoids.

8. 8. Since trypsin does not appear to disrupt thylakoids nor prevent their normal aggregation in high sucrose-salt medium and since the trypsin molecule is probably impermeable, it is probable that the site(s) of trypsin attack in System II are exposed on the outer thylakoid surface.

Abbreviations: DCIP, 2,6-dichlorophenolindophenol; PMS, phenazine methosulfate; Tricine, N-tris(hydroxymethyl)methylglycine; MES, 2-(N-morpholino)ethanesulfonic acid; DCMU, (3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   


7.
1. In the presence of Triton X-100, chloroplast membranes of the green alga Acetabularia mediterranea were disrupted into two subchloroplast fragments which differed in buoyant density. Each of these fractions had distinct and unique complements of polypeptides, indicating an almost complete separation of the two fragments.

2. One of the two subchloroplast fractions was enriched in chlorophyll b. It exhibited Photosystem II activity, was highly fluorescent and was composed of particles of approx. 50 Å diameter.

3. The light-harvesting chlorophyll-protein complex of the Photosystem II-active fraction had a molecular weight of 67 000 and contained two different subunits of 23 000 and 21 500. The molecular ratio of these two subunits was 2:1.  相似文献   


8.
Rita Barr  Frederick L. Crane 《BBA》1982,681(1):139-142
A 120 min incubation period with sulfhydryl reagents, such as p-chloromercuribenzoic acid, shows greater than 50% loss of electron-transport activity in Photosystem (PS) II of spinach chloroplasts. Since p-chloromercuriphenylsulfonic acid, a nonpenetrating sulfhydryl reagent, and 4,4′-dithiopyridine, a bifunctional sulfhydryl reagent, show greater inhibition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive silicomolybdate reduction than of dibromothymoquinone-insensitive indophenol reduction, it is postulated that two different sulfhydryl reagent-sensitive sites are involved in the PS II electron-transport chain of spinach chloroplasts.  相似文献   

9.
10.
1. Incubation of chloroplasts with HgCl2 at a molar ratio of HgCl2 to chlorophyll of about unity, induced a complete inhibition of the methyl viologen Hill reaction, as well as methyl viologen photoreduction with reduced 2,6-dichlorophenolindophenol (DCIP) as electron donor. Photooxidation of cytochrome ? was similarly sensitive towards HgCl2, whereas photooxidation of P700 was resistant to the poison. Photoreduction of cytochrome ? and light-induced increase in fluorescence yield were enhanced by the HgCl2 treatment of chloroplasts.  相似文献   

11.
G.A. Volkov 《BBA》1973,314(1):83-92
Transient hyperpolarization of the external cytoplasmatic membrane may be observed on rapid illumination of the Nitella flexilis cell. Several important properties of that response make the latter similar to a considerable degree to the excitation response.The condition for transient hyperpolarization is the normal functioning of the electron transport chain conjugated with non-cyclic photophosphorylation.The value of the membrane potential at the moment of hyperpolarization of the external cytoplasmic membrane, is determined by the difference in the electrochemical potential of HCO3? or H+. This state of the plasmalemma supplements the two other known states: normal and depolarized (excited), when the main ions determining membrane potential are K+ and Cl?.  相似文献   

12.
Kenneth J. Leto 《BBA》1984,766(1):98-108
Three minor Chl a proteins were detected in electrophoretic profiles from wild-type maize thylakoids. The spectral characteristics of these Chl proteins and the apparent molecular weights of their constituent apoproteins suggested that they were associated with the Photosystem-II reaction center. One of these Chl a-proteins, CPa-1, was present in wild-type thylakoids and a photochemically active Photosystem-II particle, but was missing from thylakoids of a mutant-lacking Photosystem-II reaction center. CPa-2, on the other hand, was enriched in mutant thylakoids but was completely missing from the Photosystem-II particles. We conclude that CPa-1 is most likely to contain the photoactive chlorophyll of Photosystem II, while CPa-2 is not required for Photosystem-II activity. The apparent molecular weights of the major CPa-1 and CPa-2 apoproteins were 48 000 and 42 000, respectively. The third minor Chl protein seems most likely to be an electrophoretic variant of CPa-1 and has been designated CPa-11. Seven other Chl proteins were detected in wild-type profiles. Many of these Chl proteins appeared to be oligomers or highly order complexes of LHCP and CP-1.  相似文献   

13.
The widely assumed correspondence between fluorescence and photochemistry in photosynthetic systems has recently been challenged by observations on the triplet state of bacteriochlorophyll in reaction centres of Rhodopseudomonas spheroides. In order to check this assumption we have conducted a precise determination of the quantum efficiency of bacteriochlorophyll photooxidation in reaction centres at room temperature. We find a quantum efficiency of 1.02 ± 0.04 in contrast to a value of about 0.7 predicted from the variations in fluorescence yield.  相似文献   

14.
Taka-Aki Ono  Norio Murata 《BBA》1978,502(3):477-485
Thylakoid membranes were prepared from the blue-green alga, Anacystis nidulans with lysozyme treatment and a short period of sonic oscillation. The thylakoid membrane preparation was highly active in the electron transport reactions such as the Hill reactions with ferricyanide and with 2,6-dichlorophenolindophenol, the Mehler reaction mediated by methyl viologen and the system 1 reaction with methyl viologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system. The Hill reaction with ferricyanide and the system 1 reaction was stimulated by the phosphorylating conditions. The cyclic and non-cyclic phosphorylation was also active.These findings suggest that the preparation of thylakoid membranes retained the electron transport system from H2O to reaction center 1, and that the phosphorylation reaction was coupled to the Hill reaction and the system 1 reaction.  相似文献   

15.
16.
By density gradient centrifugation of the 80000 × g supernatant of digitonintreated spinach chloroplasts two main green bands and one minor green band were obtained. The purification and properties of the particles present in the main bands, which were shown to be derived from Photosystem I and Photosystem II, have been described previously; those of the particles in the minor fraction will be described in the present paper.

After purification, these particles show Photosystem II activity but are devoid of Photosystem I activity. They have a high chlorophyll a/chlorophyll b ratio and are enriched in β-carotene and cytochrome b559. At liquid nitrogen temperature, photoreduction of C550 and photooxidation of cytochrome-b559 can be observed. At room temperature, cytochrome b559 undergoes slight photooxidation.

These properties indicate that this particle may be the reaction-center complex of Photosystem II. It is suggested that, in vivo, the Photosystem II unit is made up of a reaction-center complex and an accessory complex, the latter being found in one of the main green bands of the density gradient.  相似文献   


17.
M. Kitajima  W.L. Butler 《BBA》1973,325(3):558-564
The photoreactions mediated by Photosystem II at low temperatures were examined in subchloroplast particles enriched in Photosystem II to determine if the Photosystem II activity was independent of C-550 in such particle preparations. Two types of Photosystem II particle preparations were tested, one enriched in chlorophyll b and the other purified further to eliminate the chlorophyll b. The Photosystem II-mediated photoreactions at low temperature were the same in both of the Photosystem II particle preparations as they were in normal chloroplasts. C-550 acted as if it were the primary electron acceptor of Photosystem II in all of the experiments performed.  相似文献   

18.
H. Conjeaud  P. Mathis  G. Paillotin 《BBA》1979,546(2):280-291
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680+ decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (<1 μs) by the physiological donor D1; a slower reduction (6 and 22 μs) by donor D′1, operative when O2 evolution is inhibited; a back-reaction (130 μs) when D′1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D′1) are located at the internal side of the thylakoid membrane.  相似文献   

19.
Eckhard Loos 《BBA》1976,440(2):314-321
Action spectra were measured for positive changes in variable fluorescence (emission > 665 nm) excited by a beam of 485 nm chopped at 75 Hz. The action of two further beams was compared, one being variable, the other (reference) constant with respect to wavelength and intensity. Comparison was achieved by alternating the reference and the variable wavelength beams at 0.3 Hz and adjusting the intensity of the latter such as to cancel out any 0.3 Hz component in the 75 Hz fluorescence signal. The relative action then was obtained as the reciprocal of the intensity of the variable wavelength beam. Similarly, action spectra were measured for O2 evolution with ferricyanide/p-phenylenediamine as electron acceptor, and for O2 uptake mediated by methyl viologen with ascorbate 3-(p-chlorophenyl)-1,1-dimethylurea as electron donor in the presence of 2,6-dichlorophenolindophenol.Addition of 5 mM MgCl2 increases the relative action around 480 nm for the change in variable fluorescence and p-phenylenediamine-dependent O2 evolution, and decreases it for methyl viologen-mediated O2 uptake with 2,6-dichlorophenolindophenol/ascorbate as electron donor in the presence of 3-(p-chlorophenyl-1,1-dimethylurea. The change in variable fluorescence and O2 evolution are stimulated by MgCl2, whereas O2 uptake is inhibited by it.The results are discussed in terms of a model assuming a tripartite organization. of the photosynthetic pigments (Thornber, J. P. and Highkin, H. R. (1974) Eur. J. Biochem. 41, 109–116; Butler, W. L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–85). MgCl2 is thought to promote energy transfer to Photosystem II from a light-harvesting pigment complex serving both photosystems.  相似文献   

20.
B. A. Diner  D. C. Mauzerall 《BBA》1971,226(2):492-497
A cell-free preparation has been isolated from Phormidium luridum that evolves oxygen when coupled to one-electron oxidants, that is insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and that yields oxygen at a rate dependent on redox potential. In this preparation the Hill oxidant couples closer to the oxygen-producing apparatus than in any other cell-free system. Light saturation curve data for the cell-free preparation shows a stabilization, by the Hill oxidant, of intermediates in oxygen synthesis. In whole cells coupled to CO2 or to K3 Fe(CN)6 no such stabilization occurs and a 2nd order light intensity dependence of the oxygen-production rate is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号