首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Aspects of osmotic properties of liposomes, prepared from synthetic lecithin, above, at and below the gel to liquid crystalline phase transition temperature are described. The experiments show that liposomal membranes with their lipids in the gel state are still permeable to water. The rate of water permeation changes drastically on passing the transition temperature. The water permeation has activation energies of 9.5 +/- 1.28 and 26.4 +/- 0.9 kcal/mol above and below the transition temperature, respectively, indicating that the diffusion processes take place by different mechanisms. With respect to the barrier properties of the liposomes in the vicinity of the transition temperature, the following conclusions can be made. (1) Studying the osmotic shrinkage of liposomes at a fixed temperature near the transition point, the experiments indicate that dimyristoyl phosphatidylcholine membranes are highly permeable to glucose under these conditions, where liquid and solid domains co-exist. Under the same conditions the osmotic experiments did not indicate a strong increase in glucose permeability of dipalmitoyl phosphatidylcholine membranes as compared to the situation above and below the transition temperature. (2) On the other hand, perturbations of the phase equilibrium by temperature varations resulted in a marked increase of the glucose permeation through dipalmitoyl phosphatidylcholine bilayers. Once a new phase equilibrium of liquid and solid regions is established the permeation rate of glucose is much less.  相似文献   

2.
Freeze-fracture electron microscopy is used to study the rippled texture in pure dimyristoyl and dipalmitoyl phosphatidylcholine membranes and in mixtures of dimyristoyl phosphatidylcholine and cholesterol. Evidence is presented that the apparent phase transition properties of multilamellar liposomes may be dependent on the manner in which liposomes are prepared. Under certain conditions the ripple structures as visualized by freeze-fracture electron microscopy for the pure phosphatidylcholines are observed to be temperature dependent in the vicinity of the pretransition. Thus the transition can sometimes appear to be a gradual transition rather than a sharp, first-order phase transition. In mixtures of dimyristoyl phosphatidylcholine and cholesterol, the ripple repeat distance is found to increase as the cholesterol concentration is increased between 0 and 20 mol%. Above 20 mol%, no rippling is observed. A simple theory is presented for the dependence of ripple repeat spacing on cholesterol concentration in the range 0–20 mol%. This theory accounts for the otherwise inexplicable abrupt increase in the lateral diffusion coefficients of fluorescent lipids in binary mixtures of phosphatidylcholine and cholesterol when the cholesterol concentration is increased above 20 mol%.  相似文献   

3.
The kinetics of the electrostatically induced phase transition of dimyristoyl phosphatidic acid bilayers was followed using the stopped-flow technique. The phase transition was triggered by a fast change in the pH or the magnesium ion concentration and followed by recording the time dependence of the absorbance. When the phase transition was induced by a pH jump the time course of the absorbance could be described by two exponentials, their time constants displaying the for cooperative processes characteristic maximum at the transition midpoint. The time constants are in the 10 and 100 ms range for the H+ triggered transition from the fluid to the ordered state. A third slower process shows no appreciable temperature dependence and is probably caused by vesicle aggregation. For the OH--induced transition fron the ordered to the fluid state the time constants are in the 100 and 1000 ms range. The fluid-ordered transition could also be triggered by addition of magnesium ions. Of the several observed processes only the fastest in the 10–100 ms time range could definitely be assigned to the fluid-ordered transition while the others are due to aggregation phenomena. The experimental data were compared with results obtained from pressure jump experiments and could be interpreted on the basis of theories for non-equilibrium relaxation.  相似文献   

4.
Reconstitution of glycophorin into dimyristoyl phosphatidylcholine and sphingomyelin vesicles was sub-maximal below the phase transition temperatures of these lipids. Reconstitution of glycophorin into diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine liposomes was maximal within a range of temperatures below the phase transition temperatures of dimyristoyl phosphatidylcholine and sphingomyelin but above the phase transition temperatures of diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine. These findings indicate a greater tendency for reconstitution of glycophorin into fluid as opposed to solid lipid phases.  相似文献   

5.
The ultrasonic absorption of large unilamellar vesicles (average diameter 0.2 micron) was determined in the frequency range 0.5-5 MHz. The liposomes were composed of a 4:1 mixture by weight of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylglycerol. They were studied with and without cholesterol or gramicidin incorporated into the bilayer. A large increase in absorption occurs at the solid to liquid-crystalline phase transition temperature (42 degrees C) of the pure lipid vesicles. This increase in absorption is interpreted as a structural relaxation of the 'melting' fatty acid chains occurring with an average relaxation time of 76 ns. The liposomes were also found to be extremely permeable near the transition temperature. Essentially complete release of cytosine arabinoside, a small water-soluble molecule, occurred at 42 degrees C. Addition of cholesterol or gramicidin to the bilayer of the liposomes broadened the ultrasonic absorption and reduced the efflux of cytosine arabinoside at the phase transition. No increase in absorption was observed at the transition temperature in the presence of 50 mol% of cholesterol. Gramicidin, in addition to broadening the transition, slows the isomerization of bonds in the hydrocarbon chains of the lipids. A concentration of 5 mol% gramicidin increased the average relaxation time to 211 ns.  相似文献   

6.
Raman spectroscopic frequency differences between selected carbon-carbon stretching modes of lipid hydrocarbon chains were determined as a function of temperature for use in monitoring lipid phase transition behavior and acyl chain disorder in both multilamellar and single-wall vesicles. Transition temperatues detected by this procedure for pure dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine multilayers were observed at 39±1 °C and 23±1 °C, respectively. Although the phase transition for unilamellar vesicles of dipalmitoyl phosphatidylcholine occurred at nearly the same temperature as the multilayers, the crystal-liquid crystalline transition for the single-shell vesicles appeared to span a slightly broader temperature range, a characteristic consistent with irregularities in the packing arrangement of the hydrocarbon chains. Within the precision of the Raman spectroscopic method, however, the temperature behavior of both the multilamellar and the unilamellar dimyristoyl phosphatidylcholine assemblies appeared nearly identical. The temperature profile for the Raman frequency differences of an excess water sonicate of 25 mol percent cholesterol in dipalmitoyl phosphatidylcholine served as an example of the effect upon lipid phase transition characteristics of a bilayer component intercalated between the acyl chains. For this particular cholesterol-lipid system the phase transition was broadened over a 30 °C temperature range, in contrast to the narrow 5?4 °C range observed for pure multilayer and single-shell vesicle particles.  相似文献   

7.
Activation of the first component of human complement (C1) by bilayer-embedded nitroxide spin label lipid haptens and specific rabbit antinitroxide antibody has been measured. The nitroxide spin label hapten was contained in host bilayers of either dimyristoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine in the form of both liposomes and vesicles. At a temperature of 32 degrees C, which is intermediate between the hydrocarbon chain-melting temperatures of the two phospholipids, activation of C1 in such vesicles and liposomes is more efficient in the fluid membrane. Studies of C1 activation in binary mixtures of cholesterol and dipalmitoyl phosphatidylcholine indicate that the activation of C1 is not limited by the lateral diffusion of the lipid haptens in these membranes.  相似文献   

8.
(1) Dibucaine evokes a downward shift in the phase transition temperature of saturated phosphatidylcholines, while it also affects the pretransition. (2) The binding of dibucaine to phosphatidylcholine liposomes increases sharply when the lipid is transformed from the gel phase to the liquid-crystalline phase. (3) The activity of Naja naja phospholipase A2 towards dimyristoyl phosphatidylcholine liposomes is either stimulated or inhibited by dibucaine, depending on whether the substrate is in the gel or the liquid-crystalline state, respectively, whereas the activity of pancreatic phospholipase A2 is inhibited by the anesthetic irrespective of the physical state of the substrate. This observation is further substantiated by the results of studies on liposomes prepared from mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine or dilauroyl and distearoyl phosphatidylcholine. (4) The uptake of dibucaine by positively charged liposomes composed of phosphatidylcholine and stearylamine is considerably reduced in comparison with pure phosphatidylcholine liposomes. This decrease is paralleled by a reduction of the inhibitory and stimulatory effects of dibucaine on the hydrolysis of such liposomes by pancreatic and Naja naja phospholipase, respectively. (5) The inhibitory action of dibucaine towards the pancreatic phospholipase is lowered by increasing CaCl2 concentrations. This reduction is accompanied by a decreased uptake of anesthetic by the liposomes.  相似文献   

9.
The effect of membrane morphology on the cooperativity of the ordered-fluid, lipid phase transition has been investigated by comparing the transition widths in extended, multibilayer dispersons of dimyristoyl phosphatidyl-choline, and also of dipalmitoyl phosphatidylcholine, with those in the small, single-bilayer vesicles obtained by sonication. The electron spin resonance spectra of three different spin-labelled probes, 2,2,6,6-tetramethylpiperdine-N-oxyl, phosphatidylcholine and stearic acid, and also 90 degrees light scattering and optical turbidity measurements were used as indicators of the phase transition. In all cases the transition was broader in the single-bilayer vesicles than in the multibilayer dispersions, corresponding to a decreased cooperativity on going to the small vesicles. Comparison of the light scattering properties of centrifuged and uncentrifuged, sonicated vesicles suggests that these are particularly sensitive to the presence of intermediate-size particles, and thus the spin label measurements are likely to give a more reliable measure of the degree of cooperativity of the small, single-bilayer vesicles. Application of the Zimm and Bragg theory ((1959) J. Chem. Phys. 31, 526-535) of cooperative transitions to the two-dimensional bilayer system shows that the size of the cooperative unit, 1/square root sigma, is a measure of the mean number of molecules per perimeter molecule, in a given region of ordered or fluid lipid at the centre of the transition. From this result it is found that it is the vesicle size which limits the cooperativity of the transition in the small, single-bilayer vesicles. The implications for the effect of membrane structure and morphology on the cooperativity of phase transitions in biological membranes, and for the possibility of achieving lateral communication in the plane of the membrane, are discussed.  相似文献   

10.
Enzyme electrodes have been described for measuring glucose but have been limited by the saturation kinetics of the glucose oxidase not allowing clinically relevant glucose concentrations to be measured (0-25 mM). One way of alleviating this problem is to use diffusion-controlled membranes which result in the enzyme experiencing a smaller substrate concentration than that of the bulk solution. As an extension of this concept we have encapsulated glucose oxidase in liposomes whereby the lipid bilayer wall provides the diffusion-limiting membrane as well as providing a biocompatible layer which is of particular relevance when blood glucose is to be measured. Linear ranges were found to embrace the required glucose concentrations and moreover by using liposomes prepared from different lipids, e.g., dimyristoyl (14:0) phosphatidylcholine (DMPC), dipalmitoyl (16:0) phosphatidylcholine (DPPC) and distearoyl (18:0) phosphatidylcholine (DSPC), the electrode response was shown to depend on the bilayer permeabilities in relation to the lipid phase transition temperatures and as a consequence the linear ranges were duly altered.  相似文献   

11.
Unsonicated liposomes prepared from dimyristoyl phosphatidylcholine were nearly completely dissolved during a 3 h incubation with rat plasma at or close to the phase-transition temperature of 24°C. At 37 or 15°C virtually no liposomal disintegration was observed even after 24 h of incubation. The liposomal solubilization, which was monitored by turbidity measurements or by determination of phospholipid sedimentability, was accompanied by the formation of a phospholipid-protein complex similar or identical to the one we previously reported to be formed from sonicated liposomes of egg phosphatidylcholine (Scherphof, G., Roerdink, F., Waite, M. and Parks, J. (1978) Biochim. Biophys. Acta 542, 296–307). Unsonicated multilamellar liposomes made of egg phosphatidylcholine were completely resistant to the dissolving potency of plasma when incubated at 37°C. Liposomes from equimolar mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine were only degraded by plasma in the temperature range between 30 and 35°C at which temperature this cocrystallizing phospholipid mixture undergoes a phase transition. However, even at these temperatures the rate of dissolution of this mixture was significantly lower than of dimyristoyl phosphatidylcholine at 24°C. In the dissolving process of this mixture a slight preference for the lower-melting component was observed.The ability of cholesterol to completely abolish the susceptibility of dimyristoyl phosphatidylcholine liposomes to plasma at a 1:2 molar ratio of cholesterol to phospholipid substantiates the essential role of the phase transition in the process of liposome solubilization.When liposomes of the monotectic mixtures dimyristoyl and distearoyl phosphatidylcholine or dilauroyl and distearoyl phosphatidylcholine were incubated with plasma at temperatures in between those at which the constituent lipids undergo a phase change in the mixture, the liposomes were slowly disolved. Under those conditions a selective removal of the lipids in the liquid-crystalline phase was observed.It is concluded that for the plasma-induced dissolution of unsonicated liposomes, which is most probably achieved by interaction with (apo)lipoproteins, the presence of phase boundaries is required in much the same way as was first reported for phospholipases by Op den Kamp, J.A.F., de Gier, J. and Van Deenen, L.L.M. (1974) Biochim. Biophys. Acta 345, 253–256).  相似文献   

12.
1. Saturated and unsaturated phosphatidylcholines, dispersed as liposomes in water, can be hydrolysed by phospholipase A2 from pig pancreas. A pure saturated phosphatidylcholine is hydrolysed only near its transition temperature. An unsaturated phosphatidylcholine is hydrolysed preferentially near its transition temperature, but hydrolysis can occur also above the transition temperature, albeit at a much lower rate. 2. An equimolar mixture of dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, which shows cocrystallization of the paraffin chains, is hydrolyzed between 25 and 40 degrees C with a maximum at 32 degrees C, in agreement with the calorimetric scan of the phase transition. 3. An equimolar mixture of dilauroyl phosphatidylcholine and distearoyl phosphatidylcholine, which shows a monotectic behaviour, is hydrolysed at all temperatures. Hydrolysis is maximal at 0 and 40 degrees C, at which temperatures dilauroyl phosphatidylcholine and distearoyl phosphatidylcholine undergo their phase transition, respectively. 4. Both in the mixture showing cocrystallization and in the mixture in which phase separation occurs, the phosphatidylcholine species with the shorter fatty acid chains is hydrolysed at a higher rate than the longer chain fatty acid species. 5. Hydrolysis is inhibited by the presence of cholesterol in liposomes prepared of saturated phosphatidylcholine. Inhibition is complete at a cholesterol concentration of 35 mol %. Subsequent addition of filipin and amphotericin B to the mixed cholesterol-phosphatidylcholine liposomes overcomes the inhibitory effect of cholesterol.  相似文献   

13.
The effect of membrane morphology on the cooperativity of the ordered-fluid, lipid phase transition has been investigated by comparing the transition widths in extended, multibilayer dispersions of dimyristoyl phosphatidylcholine, and also of dipalmitoyl phosphatidylcholine, with those in the small, single-bilayer vesicles obtained by sonication. The electron spin resonance spectra of three different spin-labelled probes, 2,2,6,6-tetramethylpiperdine-N-oxyl, phosphatidylcholine and stearic acid, and also 90° light scattering and optical turbidity measurements were used as indicators of the phase transition. In all cases the transition was broader in the single-bilayer vesicles than in the multibilayer dispersions, corresponding to a decreased cooperativity on going to the small vesicles. Comparison of the light scattering properties of centrifuged and uncentrifuged, sonicated vesicles suggests that these are particularly sensitive to the presence of intermediate-size particles, and thus the spin label measurements are likely to give a more reliable measure of the degree of cooperativity of the small, single-bilayer vesicles. Application of the Zimm and Bragg theory ((1959) J. Chem. Phys. 31, 526–535) of cooperative transitions to the two-dimensional bilayer system shows that the size of the cooperative unit, 1/?σ, is a measure of the mean number of molecules, per perimeter molecule, in a given region of ordered or fluid lipid at the centre of the transition. From this result it is found that it is the vesicle size which limits the cooperativity of the transition in the small, single-bilayer vesicles. The implications for the effect of membrane structure and morphology on the cooperativity of phase transitions in biological membranes, and for the possibility of achieving lateral communication in the plane of the membrane, are discussed.  相似文献   

14.
The permeation of water through liposomal membranes composed of various saturated phosphatidylcholine plus gramicidin A was studied as a function of temperature. 1. The presence of gramicidin in the liposomal bilayers caused an increase in water permeability. Below the phase transition temperature this effect could be measured quite clearly in all the systems we tested, but the extent of the increase was largely dependent on the length of the hydrocarbon chains. 2. Increasing amounts of gramicidin caused a gradual disappearance of the abrupt change in the rate of water permeation near the gel-liquid crystalline phase transition temperature of dipalmitoyl phosphatidylcholine liposomes. Differential scanning calorimetry analysis of the system containing these relatively small amounts of gramicidin still showed a clear transition from the liquid crystalline to the gel state with only a slight reduction in the enthalpy change. 3. In liposomes composed of dimyristoyl, dipalmitoyl and saturated egg phosphatidylcholine there was a concomitant decrease in the activation energy of water permeation in the presence of gramicidin below and above the phase transition temperature. The activation energy for water permeation through longer chained distearoyl phosphatidylcholine liposomal bilayers was the same with or without gramicidin in the bilayer. 4. It is concluded that the ability of gramicidin to form conducting channels in a gel state bilayer depends on the thickness of the paraffin core.  相似文献   

15.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

16.
The effect of a series of n-alcohols on the permeability of small, unilamellar dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC) and distearoyl phosphatidylcholine (DSPC) vesicles at the gel-to-liquid crystal phase transition temperature was investigated. It was found that the permeability took the form of the transient lysis of a fraction of the population of vesicles. The effect on this lysis of the n-alcohols was seen to be very chain-length dependent, with a minimum at n = 8 (octan-1-ol) for DPPC vesicles. A similar minimum was observed in the presence of 0.1 mM Triton X-100, but the detergent could then interact with certain of the alcohols to produce permanent channels. The results are discussed in terms of the semi-empirical model of Brasseur et al. (1985) Biochim. Biophys. Acta 814, 227-236, for the interaction of the n-alcohols with a DPPC membrane. The effect of various n-alcohols on the outer and inner monolayers of DPPC vesicles was also studied and the results related to their fluidising effect, allowing channels to open at the phase transition temperature.  相似文献   

17.
Calorimetric experiments showed a marked effect of Ca2+ and Mg2+ on the thermotropic behaviour of dimyristoyl phosphatidylglycerol. 2. Concentrations of Ca2+ and Mg2+ lower than 1 ion to 2 molecules of phosphatidylglycerol produced a shift of the phase transition to higher temperatures and an increase in the enthalpy change which is consistent with a closer packing of the lipid molecules in the liposomes. 3. Above the 1:2 ratio, freeze-fracture electron microscopy demonstrated typical "crystal" structures both in the presence of Ca2+ and Mg2+. In the presence of Mg2+ a metastable behaviour was noticed in the calorimetric experiments. 4. A Ca2+- and Mg2+-induced shift in the transition temperature and an increase in the enthalpy change was also observed in a 1:1 mixture of dimyristoyl phosphatidylglycerol and dimyristoyl phosphatidylcholine. However, these mixed samples remained liposomal in structure at any concentration of the divalent ions. 5. Liposomes prepared from a 1:1 mixture of dimyristoyl phosphatidylglycerol and dimyristoyl phosphatidylcholine in the absence of divalent cations are permeable in the range 10-50 degrees C. Bilayers of mixtures neutralized by Ca2+ or Mg2+ were demonstrated to be completely impermeable to K+, except in the vicinity of the phase transition. 6. The leak of ions from liposomes of a 1:1 mixture of dimyristoyl phosphatidylglycerol and dimyristoyl phosphatidylcholine in the vicinity of the phase transition temperature was considerably less in the presence of Ca2+ than in the presence of Mg2+. 7. It is concluded that there is a correlation between the calorimetric data and the permeability properties of dimyristoyl phosphatidylglycerol-containing bilayers with respect to the influence of Ca2+ and Mg2+.  相似文献   

18.
Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.Abbreviations ADP adenosine diphosphate - DMPC dimyristoyl phosphatidylcholine - EDTA ethylenediaminetetraacetic acid - LUV large unilamellar vesicle - MLV multilamellar vesicle - PAGE polyacrylamide gel electrophoresis - PNPase or PNP polynucleotide phosphorylase - SUV small unilamellar vesicle Correspondence to.: A.C. Chakrabarti  相似文献   

19.
The effect of thyroid hormones on the degree of order or fluidity of dimyristoyl, dipalmitoyl or egg yolk phosphatidyl choline liposomes was evaluated by fluorescence spectroscopy methods. The freedom of molecular motion above the phase transition temperature was decreased, while below the transition, the mobility was actually increased by the incorporation of triiodothyronine to liposomes. While thyroxine decreases the fluidity in the liquid crystalline state, it cannot increase the fluidity in the gel state.A differential effect of triiodothyronine and thyroxine on the release of the liposomal content was found, depending on the liquid crystalline or gel state of the liposomes. These facts were correlated with the differential incorporation of the hormones to liposomes above and below the phase transition temperature of dimyristoyl and dipalmitoyl phospholipid choline. In gel state, a low incorporation of thyroxine compared with triiodothyronine was found.This work was supported by Grants PID 3-013800/89 from Consejo National de Investigaciones Científicas y Técnicas (CONICET), Fundación Antorchas A-12576/1-000065 and Consejo de Investigaciones de la Universidad National de Tucumán (CIUNT). We thank Dr. G. Rotillo for the space filling models.  相似文献   

20.
Shaw AW  McLean MA  Sligar SG 《FEBS letters》2004,556(1-3):260-264
Nanoscale protein supported phospholipid bilayer discs, or Nanodiscs, were produced for the purpose of studying the phase transition behavior of the incorporated lipids. Nanodiscs and vesicles were prepared with two phospholipids, dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine, and the phase transition of each was analyzed using laurdan fluorescence and differential scanning calorimetry. Laurdan is a fluorescent probe sensitive to the increase of hydration in the lipid bilayer that accompanies the gel to liquid crystalline phase transition. The emission intensity profile can be used to derive the generalized polarization, a measure of the relative amount of each phase present. Differential scanning calorimetry was used to further quantitate the phase transition of the phospholipids. Both methods revealed broader transitions for the lipids in Nanodiscs compared to those in vesicles. Also, the transition midpoint was shifted 3-4 degrees C higher for both lipids when incorporated into Nanodiscs. These findings are explained by a loss of cooperativity in the lipids of Nanodiscs which is attributable to the small size of the Nanodiscs as well as the interaction of boundary lipids with the protein encircling the discs. The broad transition of the Nanodisc lipid bilayer better mimics the phase behavior of cellular membranes than vesicles, making Nanodiscs a 'native-like' lipid environment in which to study membrane associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号