首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structurally and functionally different tobacco chloroplasts were subjected to digitonin treatment and subsequent fractional centrifugation. The light-harvesting chlorophyll achlorophyll b-protein complex was found to be enriched in the most dense fraction regardless of the presence of grana in the original preparation. It is suggested that isolated thylakoid membranes and fragments thereof which contain sufficient light-harvesting protein may, under appropriate ionic conditions, form aggregates even when they originate from unstacked thylakoid systems. Comparative studies of fluorescence properties and polypeptide composition of the thylakoids suggest that the light-harvesting protein does not contribute significantly to the fluorescence spectrum of isolated chloroplasts as long as this protein is intimately associated with the Photosystem II (PS II) pigment-protein complex responsible for the 685 nm emission. While the PS II-deficient mutant chloroplasts of the variegated tobacco variety NC 95 lacked both the 685 nm fluorescence component and two or three PS II proteins, one of these proteins was found to be very prominent in our chlorophyll b-deficient mutant thylakoids which also displayed an intense 685 nm fluorescence peak. This correlation supports the contention that a 45 kdalton polypeptide is an apoprotein of pigments associated with the PS II reaction center.  相似文献   

2.
3.
H.Y. Nakatani  J. Barber 《BBA》1980,591(1):82-91
1. Above pH 4.3 the outer surface of thylakoid membranes isolated from pea chloroplasts is negatively charged but below this value it carries an excess of positive charge.2. Previously the excess negative charge has been attributed to the carboxyl groups of glutamic and aspartic acid residues (Nakatani, H.Y., Barber, J. and Forrester, J.A. (1978), Biochim. Biophys. Acta 504, 215–225) and in this paper it is argued from experiments involving treatments with 1,2-cyclohexanedione that the positive charges are partly due to the guanidino group of arginine.3. The electrophoretic mobility of granal (enriched in chlorophyll b and PS II activity) and stromal (enriched in PS I activity) lamellae isolated by the French Press technique were found to be the same.4. Treatment of the pea thylakoids with trypsin or pronase, sufficient to inhibit the salt induced chlorophyll fluorescence changes, increased their electrophoretic mobility indicating that additional negative charges had been exposed at the surface.5. Polylysine treatment also inhibited the salt induced chlorophyll fluorescence changes but unlike trypsin and pronase, decreased the net negative charge on the surface.6. The isoelectric point defined as the pH which gave zero electrophoretic mobility (about 4.3) was independent of the nature of the cations in the suspending medium (monovalent vs. divalent).  相似文献   

4.
W.S. Chow  R.C. Ford  J. Barber 《BBA》1981,635(2):317-326
Salt-induced chlorophyll fluorescence and spillover changes in control and briefly sonicated chloroplasts have been studied under conditions where Photosystem II traps are closed. In a low-salt medium containing 10 mM KCl, control envelope-free chloroplasts exhibited good spillover, as measured by low chlorophyll fluorescence yield at room temperature, a high ratio of the fluorescence peaks F735F685 at 77 K, and increased Photosystem I activity in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and Photosystem II light. In contrast, when stacked chloroplasts were briefly sonicated and subsequently diluted into a low-salt medium, a high fluorescence yield at room temperature and a low ratio of F735F685 at 77 K persisted. When unstacked chloroplasts were sonicated and then diluted into a high-salt medium, the room temperature fluorescence yield remained low. The results are interpreted in terms of a model relating the changes in chlorophyll fluoresecence with the lateral diffusion of Photosystem I and Photosystem II chlorophyll-protein complexes in the plane of the thylakoid membrane creating randomized or segregated domains, depending on the degree of electrostatic screening of surface charges (Barber, J. (1980) FEBS Lett. 188, 1–10). It is argued that brief sonication of stacked chloroplasts separates stromal membranes from granal stacks, thus limiting the inter-mixing of the photosystems via lateral diffusion even when the ionic composition of the medium is varied. Consequently energy transfer from Photosystem II to Photosystem I is relatively poor and chlorophyll fluorescence from Photosystem II is enhanced. The loss of the salt effect on sonicated unstacked membranes can also be accommodated by the model. In this case it seems that the generation of small membrane fragments does not allow the normal salt-induced phase separation of the pigment-protein complexes to occur.  相似文献   

5.
The polypeptide composition and spectral properties of isolated light-harvesting chlorophyll ab-protein complexes from intact and trypsin-treated thylakoid membranes of Hordeum vulgare and Vicia faba are compared. The LHCP complexes consist of four distinct polypeptides with molecular weights between 21 000 and 25 000 occurring in equal relative amounts in the whole polypeptide spectra of thylakoid membranes. It is shown indirectly that the two major polypeptides very probably belong to different chlorophyll-proteins. The loss of a small segment from both polypeptides during trypsin digestion of thylakoids does not substantially alter the spectral properties and cation-mediated aggregation of isolated LHCP complexes.  相似文献   

6.
The time-resolved chlorophyll fluorescence emission of higher plant chloroplasts monitors the primary processes of photosynthesis and reflects photosynthetic membrane organization. In the present study we compare measurements of the chlorophyll fluorescence decay kinetics of the chlorophyll-b-less chlorina-f2 barley mutant and wild-type barley to investigate the effect of alterations in thylakoid membrane composition on chlorophyll fluorescence. Our analysis characterizes the fluorescence decay of chlorina-f2 barley chloroplasts by three exponential components with lifetimes of approx. 100 ps, 400 ps and 2 ns. The majority of the chlorophyll fluorescence originates in the two faster decay components. Although photo-induced and cation-induced effects on fluorescence yields are evident, the fluorescence lifetimes are independent of the state of the Photosystem-II reaction centers and the degree of grana stacking. Wild-type barley chloroplasts also exhibit three kinetic fluorescence components, but they are distinguished from those of the chlorina-f2 chloroplasts by a slow decay component which displays cation- and photo-induced yield and lifetime changes. A comparison is presented of the kinetic analysis of the chlorina-f2 barley fluorescence to the decay kinetics previously measured for intermittent-light-grown peas (Karukstis, K. and Sauer, K. (1983) Biochim. Biophys. Acta 725, 384–393). We propose that similarities in the fluorescence decay kinetics of both species are a consequence of analogous rearrangements of the thylakoid membrane organization due to the deficiencies present in the light-harvesting chlorophyll ab complex.  相似文献   

7.
J.S.C. Wessels  M.T. Borchert 《BBA》1978,503(1):78-93
In addition to the major chlorophyll · protein complexes I and II, two minor chlorophyll proteins have been observed in sodium dodecyl sulfate (SDS)-polyacrylamide gels of spinach chloroplast membranes. These minor pigmented zones appeared to be derived from the light-harvesting chlorophyll ab · protein and from the reaction centre complex of Photosystem II.Data are presented on the polypeptide profiles of purified digitonin-subchloroplast particles, with special regard to the effect of solubilization temperature and extraction of lipids. The results are compared with the SDS-polypeptide pattern of spinach thylakoids obtained under exactly the same conditions with respect to electrophoresis technique, solubilization method and presence of lipid. In addition, the effects of temperature and lipid extraction on the distinct chlorophyll · protein complexes appearing in SDS gel electrophoretograms of chloroplast membranes were studied by slicing the chlorophyll-containing regions and subjecting them to a second run with or without heating or extraction with acetone. By supplementing these data with an examination of the polypeptide composition of cytochrome f and coupling factor, it has been possible to identify most of the major chloroplast membrane polypeptides.  相似文献   

8.
Experiments are presented to show that the phosphorylation of the light-harvesting chlorophyll ab-protein complex (LHC) induces structural reorganisation within the thylakoid membrane in response to the introduction of additional negative surface charges. The effect of cations of different valency on chlorophyll fluorescence measurements indicates that LHC-phosphorylation-induced reorganisation involves a change in the electrostatic screening capability of the added cation. At intermediate levels of cations (e.g., 1 or 2 mM Mg2+), which substantially stack non-phosphorylated membranes, it was found that membrane phosphorylation caused considerable unstacking as monitored by light scattering and electron microscopy. Concomitant with this was a large decrease in chlorophyll fluorescence indicative of randomisation of chlorophyll protein complexes which would result in an increase in energy transfer between the photosystems as well as an absorption cross-section change. At higher concentrations (e.g., above 5 mM Mg2+) a persistent ATP-induced decrease in chlorophyll fluorescence has been attributed to the displacement of charged phosphorylated LHC from the appressed granal to the non-appressed stromal lamellae, thus decreasing the absorption cross-section of Photosystem II. Under these circumstances only a small degree of unstacking was detected by light scattering and measurements of the percentage of thylakoid length which is stacked to form grana. However, when considered on a surface area basis, the structural changes observed can qualitatively account for the magnitude of the chlorophyll fluorescence quenching due to the lateral diffusion of LHC.  相似文献   

9.
Kenneth Leto  Charles Arntzen 《BBA》1981,637(1):107-117
Despite the total loss of Photosystem II activity, thylakoids isolated from the green nuclear maize mutant hcf1-3 contain normal amounts of the light-harvesting chlorophyll ab pigment-protein complex (LHC). We interpret the spectroscopic and ultrastructural characteristics of these thylakoids to indicate that the LHC present in these membranes is not associated with Photosystem II reaction centers and thus exists in a ‘free’ state within the thylakoid membrane. In contrast, the LHC found in wild-type maize thylakoids shows the usual functional association with Photosystem II reaction centers. Several lines of evidence suggest that the free LHC found in thylakoids isolated from hcf1-3 is able to mediate cation-dependent changes in both thylakoid appression and energy distribution between the photosystems: (1) Thylakoids isolated from hcf1-3 and wild-type seedlings exhibit a similar Mg2+-dependent increase in the short/long wavelength fluorescence emission peak ratio at 77 K. This Mg2+ effect is lost following incubation of thylakoids isolated from either source with low concentrations of trypsin. Such treatment results in the partial proteolysis of the LHC in both membrane types. (2) Thylakoids isolated from both hcf1-3 and wild-type seedlings show a similar Mg2+ dependence for the enhancement of the maximal yield of room temperature fluorescence and light scattering; both Mg2+ effects are abolished by brief incubation of the thylakoids with low concentrations of trypsin (3) Mg2+ acts to reduce the relative quantum efficiency of Photosystem I-dependent electron transport at limiting 650 nm light in thylakoids isolated from hcf1-3. (4) The pattern of digitonin fractionation of thylakoid membranes, which is dependent upon structural membrane interactions and upon LHC in the thylakoids, is similar in thylakoids isolated from both hcf1-3 and wild-type seedlings. We conclude that the surface-exposed segment of the LHC, but not the LHC-Photosystem II core association, is necessary for the cation-dependent changes in both thylakoid appression and energy distribution between the two photosystems, and that the LHC itself is able to transfer excitation energy directly to Photosystem I in a Mg2+-dependent fashion in the absence of Photosystem II reaction centers. The latter phenomenon is equivalent to a cation-induced change in the absorptive cross-section of Photosystem I.  相似文献   

10.
An O2-evolving Photosystem II subchloroplast preparation was obtained from spinach chloroplasts, using low concentrations of digitonin and Triton X-100. The preparation showed an O2 evolution activity equivalent to 20% of the uncoupled rate of fresh broken chloroplasts, but had no significant Photosystem-I-dependent O2 uptake activity. The preparation showed a chlorophyll ab ratio of 1.9 and a P-700chlorophyll ratio of 12400. Absorption spectra at room temperature and fluorescence emission spectra of chlorophyll at 77 K suggested a significant decrease in Photosystem I antenna chlorophylls in the O2-evolving Photosystem II preparation.  相似文献   

11.
Four procedures utilizing different detergent and salt conditions were used to isolate oxygen-evolving Photosystem II (PS II) preparations from spinach thylakoid membranes. These PS II preparations have been characterized by freeze-fracture electron microscopy, SDS-polyacrylamide gel electrophoresis, steady-state and pulsed oxygen evolution, 77 K fluorescence, and room-temperature electron paramagnetic resonance. All of the O2-evolving PS II samples were found to be highly purified grana membrane fractions composed of paired, appressed membrane fragments. The lumenal surfaces of the membranes and thus the O2-evolving enzyme complex, are directly exposed to the external environment. Biochemical and biophysical analyses indicated that all four preparations are enriched in the chlorophyll ab-light-harvesting complex and Photosystem II, and depleted to varying degrees in the stroma-associated components, Photosystem I and the CF1-ATPase. The four PS II samples also varied in their cytochrome f content. All preparations showed enhanced stability of oxygen production and oxygen-rate electrode activity compared to control thylakoids, apparently promoted by low concentrations of residual detergent in the PS II preparations. A model is presented which summarizes the effects of the salt and detergent treatments on thylakoid structure and, consequently, on the configuration and composition of the oxygen-evolving PS II samples.  相似文献   

12.
The addition of ATP to thylakoids isolated from Chlorella vulgaris is shown to lead to a quenching of fluorescence originating from Photosystem II and phosphorylation of chlorophyll achlorophyll b light-harvesting protein (LHCP) directly analogous to that reported for higher-plant chloroplasts. The time courses of these two processes are shown to be identical. Parallel measurements of ATP-induced changes in the fluorescence properties of isolated algal thylakoids and light-driven (State 1 / State 2 changes) in whole cells strongly support the idea that LHCP phosphorylation plays an important role in State 2 adaptation under in vivo conditions.  相似文献   

13.
The effect of high salt concentration on photosystem II (PS II) electron transport rates and chlorophyll a fluorescence induction kinetics was investigated in coupled and uncoupled spinach thylakoid membranes. With increase in salt concentration, the rates of electron transport mediated by PS II and the F v/F m ratio were affected more in uncoupled thylakoids as compared to coupled thylakoid membranes. The uncoupled thylakoid membranes seemed to behave like coupled thylakoid membranes at high NaCl concentration (∼1 M). On increasing the salt concentration, the uncoupler was found to be less effective and Na+ probably worked as a coupling enhancer or uncoupling suppressor. We suggest that positive charge of Na+ mimics the function of positive charge of H+ in the thylakoid lumen in causing coupled state. The function of NaCl (monovalent cation) could be carried out by even lower concentration of Ca2+ (divalent cation) or Al3+ (trivalent cation). We conclude that this function of NaCl as coupling enhancer is not specific, and in general a positive charge is required for causing coupling in uncoupled thylakoid membranes. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 6, pp. 761–767.  相似文献   

14.
Eun-Ha Kim  Peter Horton 《BBA》2005,1708(2):187-195
Chloroplasts in plants and some green algae contain a continuous thylakoid membrane system that is structurally differentiated into stacked granal membranes interconnected by unstacked thylakoids, the stromal lamellae. Experiments were conducted to test the hypothesis that the thermodynamic tendency to increase entropy in chloroplasts contributes to thylakoid stacking to form grana. We show that the addition of bovine serum albumin or dextran, two very different water-soluble macromolecules, to a suspension of envelope-free chloroplasts with initially unstacked thylakoids induced thylakoid stacking. This novel restacking of thylakoids occurred spontaneously, accompanied by lateral segregation of PSII from PSI, thereby mimicking the natural situation. We suggest that such granal formation, induced by the macromolecules, is partly explained as a means of generating more volume for the diffusion of macromolecules in a crowded stromal environment, i.e., greater entropy overall. This mechanism may be relevant in vivo where the stroma has a very high concentration of enzymes of carbon metabolism, and where high metabolic fluxes are required.  相似文献   

15.
The thylakoid membrane forms stacked thylakoids interconnected by ‘stromal’ lamellae. Little is known about the mobility of proteins within this system. We studied a stromal lamellae protein, Hcf106, by targeting an Hcf106-GFP fusion protein to the thylakoids and photobleaching. We find that even small regions fail to recover Hcf106-GFP fluorescence over periods of up to 3 min after photobleaching. The protein is thus either immobile within the thylakoid membrane, or its diffusion is tightly restricted within distinct regions. Autofluorescence from the photosystem II light-harvesting complex in the granal stacks likewise fails to recover. Integral membrane proteins within both the stromal and granal membranes are therefore highly constrained, possibly forming ‘microdomains’ that are sharply separated.  相似文献   

16.
M. Hodges  J. Barber 《BBA》1984,767(1):102-107
The effect of Mg2+ concentration and phosphorylation of the light harvesting chlorophyll ab protein on the ability of DBMIB to quench chlorophyll fluorescence of isolated pea thylakoids has been studied. Over a wide range of Mg2+ concentrations (5?0.33 mM), the observed changes in fluorescence yield are mirrored by similar changes in the quenching ability of DBMIB, indicating that the cation-induced phenomenon involves alterations in radiative lifetimes. In contrast, phosphorylation at 10 mM Mg2+ brings about a lowering of the chlorophyll fluorescence yield, while having no effect on the quenching capacity of DBMIB. This result can be interpreted as a phosphorylation-induced decrease in PS II absorption cross-section. At Mg2+ levels between 5 and 1 mM, phosphorylation leads to a change in the quenching of fluorescence by DBMIB, when compared with non-phosphorylated thylakoids. At these cation levels, the degree of DBMIB-induced quenching cannot wholly account for the observed changes in chlorophyll fluorescence due to phosphorylation. It is concluded that the phosphorylation- and Mg2+-induced changes in fluorescence yield are independent but inter-related processes which involve surface charge screening as emphasised by the change in cation sensitivity of the DBMIB quenching before and after phosphorylation.  相似文献   

17.
The extraction of chlorophyll-protein (CP) complexes from thylakoids by the detergent octyl glucoside is strongly affected by pretreatment of the thylakoids with trypsin or cations. In these experiments, washed thylakoids were incubated in the presence of 0.5 μm to 5 mm Mg2+, pelleted, and extracted with octyl glucoside (30 mm). Increasing amounts of Mg2+ depressed extractability of all CP complexes, but especially the chlorophyll a + b-containing light-harvesting complex (LHC). This cation effect is observed with other cations which promote thylakoid stacking (5 mm Mn2+ or Ca2+, 50 mm Na+). However, the effect is not merely due to stacking, since low concentrations of Mg2+ (0.5 μmto 0.5 mm) have a marked effect on extractability but have no effect on light scattering (OD 550 nm), an indicator of stacking. Furthermore, trypsin treatment of thylakoids stacked with 5 mm Mg2+ caused a significant reversal of stacking, but had little effect on extractability. Trypsin treatment of unstacked membranes resulted in increased extractability of all CP complexes, but especially of the LHC. Cation-treated membranes are also significantly different from those “stacked” at pH 4.5. While the latter do show decreased extractability, there is no change in the chlorophyll ab ratio of the extract, and the membranes cannot be “unstacked” with trypsin. We conclude that octyl glucoside extractability reflects the lateral interaction of CP complexes with each other and with other components in the same plane of the membrane. It is clear that divalent cations have several effects on thylakoid membranes, not all of which are due to their ability to promote stacking.  相似文献   

18.
Thylakoid membrane protein phosphorylation affects photochemical reactions of Photosystem II. Incubation of thylakoids in the light with ATP leads to: (1) an increase in the amplitude of three components (4–6, 25–45 and 280–300 μs) of delayed light emission after a single flash without any change in their kinetics; (2) a reduction of the flash-dependent binary oscillations of chlorophyll a fluorescence yield associated with electron transfer from the primary quinone acceptor, Q, to the secondary quinone acceptor, B; (3) an increase in the B?B ratio resulting from an increase in stability of the semiquinone anion during dark adaptation; and (4) no change in the redox state of the plastoquinone pool as determined by flash-induced photooxidation of the Photosystem I reaction center, P-700. All the above observations are reversible upon dephosphorylation of the thylakoid membranes. These data are explained by a protein phosphorylation-induced stabilization of the bound semiquinone anion, B?. It is proposed that this increased stability may be due to an alteration in the accessibility of an endogenous reductant to B, or to an increase in dissipative cycling of charge around Photosystem II.  相似文献   

19.
Small particles derived from the digitonin treatment of chloroplast thylakoid membranes in either the stacked (grana-containing) or unstacked condition, as determined by cation concentration, have been used to study the aggregation of thylakoid membranes. At pH values above 5, the small particles from stacked chloroplasts do not aggregate in the presence of Mg2+ or other screening cations at concentrations sufficient to cause the restacking of thylakoids from low-salt chloroplasts. However, the small particles from stacked chloroplasts are aggregated either by lowering the pH to 4.6 or adding the binding cation La3+. In contrast, the small particles obtained on digitonin treatment of unstacked chloroplasts were aggregated by cations at neutral pH. Large particles (mainly grana) derived from digitonin treatment of stacked chloroplasts could not be unstacked by transfer to media of low cation concentration. It is concluded that the nonappressed regions of the chloroplast thylakoid membranes under stacking conditions carry higher than average negative surface charge densities under physiological pH conditions. Transfer of chloroplasts to media of low cation concentration causes a time-dependent lateral redistribution of charge between the appressed and nonappressed regions, but this redistribution is prevented by prior digitonin treatment of stacked chloroplasts.  相似文献   

20.
Comparative measurements were made of the fluidity of chloroplast thylakoids, total membrane lipids and polar lipids utilizing the order parameter and motion of spin labels.No significant differences were found in the fluidity of membranes or total membrane lipids from a wild type and a mutant barley (Hordeum vulgare chlorina f2 mutant) which lacks chlorophyll b and a 25 000 dalton thylakoid polypeptide. Redistribution of intrinsic, exoplasmic face (EF) membrane particles by unstacking thylakoid membranes in low salt medium also had no effect on membrane fluidity. However, heating of isolated thylakoids decreased membrane fluidity.The fluidity of vesicles composed of membrane lipids is much greater than that of the corresponding membranes. Fluidity of the membranes, however, increased during greening indicating that the rigidity of the membranes, compared with that of total membrane lipids, is not caused by chlorophyll or its associated peptides. It is concluded that the restriction of motion in the acyl chains in the thylakoids is not caused by chlorophyll or the major intrinsic polypeptide but by some other protein components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号