首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black lipid membranes were formed of tetraether lipids from Thermoplasma acidophilum and compared to the bilayer forming lipids diphytanoylphosphatidylcholine and diphythanylglucosylglycerol. Bilayer-forming lipids varied in thickness of black lipid membranes due to the organic solvent used. Measurements of the specific membrane capacitance (Cm = 0.744 microF/cm2) showed that the membrane-spanning tetraether lipids from Thermoplasma acidophilum form a monolayer of a constant thickness of 2.5-3.0 nm no matter from which solvent. This finding corresponds to the results of Gliozzi et al. for the lipids of another archaebacterium, Sulfolobus solfataricus. Black lipid membranes were formed at room temperature with a torus from bilayer-forming lipids, however, the torus could also be formed by the tetraether-lipid itself at room temperature and at defined concentration. In these stable black lipid membranes, conductance was measured in the presence of valinomycin, nonactin, and gramicidin. At 10(-7) M concentration, valinomycin mediated higher conductance in membranes from tetraether lipids (200-1200 microS/cm2) than from bilayer-forming lipids (125-480 microS/cm2). Nonactin, at 10(-6) M concentration, mediated a 6-fold higher conductance in a tetraether lipid membrane than in a bilayer, whereas conductance, in the presence of 5 x 10(-11) M gramicidin could reach higher values in bilayers than in tetraether lipid monolayers of comparable thickness. Monensin did not increase the conductance of black lipid membranes from tetraether lipids under all conditions applied in our experiments. Poly(L-lysine) destroyed black lipid membranes. Lipopolysaccharides from Thermoplasma acidophilum were not able to form stable black lipid membranes by themselves. The lipopolysaccharide complexes from Thermoplasma acidophilum and from Escherichia coli decreased the valinomycin-mediated conductance of monolayer and bilayer membranes. This influence was stronger than that of the polysaccharide dextran.  相似文献   

2.
A new method and a new apparatus for capacitance measurements on bilayer lipid membranes are described. The membrane is charged and discharged with a constant current during the measurement. The charge-discharge cycle duration, which is proportional to the membrane capacitance, is measured. The measured time period is converted into a binary number by digital systems and then this number is either further converted into a constant capacity-proportional voltage or read out by the computer. The apparatus makes it possible to measure the capacitances of voltage-polarized membranes. Application of the apparatus to capacitance measurements of bilayer lipid membranes during their potential on the capacitance is presented. The capacitances of membranes stimulated by rectangular voltage pulses and of those stimulated by a linearly varying potential were reported.  相似文献   

3.
An investigation was made of the effects of cholesterol and benzyl alcohol on the partitioning of n-alkanes between lipid bilayer membranes and bulk lipid/alkane solutions (in the torus). Bilayers were formed from solutions containing alkanes of different chain lengths, together with phosphatidylcholine and cholesterol in varying proportions. The partitioning of the alkanes was determined from measurements of the very low frequency (1 Hz) capacitance of the membranes. Perturbation of the internal membrane structure by the inclusion of cholesterol and benzyl alcohol produced very significant changes in the n-alkane partition coefficient, cholesterol causing a decrease and benzyl alcohol an increase in the alkane partitioning into the bilayer. A correlation exists between the effects of these compounds on the alkane partitioning and their effect on the segmental chain order of the acyl chains in the bilayer and this correlation is consistent with a statistical-mechanical model of the lipid/alkane bilayers in the liquid crystalline state. The perturbation by cholesterol and benzyl alcohol of the internal structure of membranes bears on the conflicting reports of the effects of these substances on artificial lipid bilayers and could also be relevant to their known physiological effects.  相似文献   

4.
We have measured the specific capacitance of phosphatidylethanolamine/phosphatidylserine membranes formed from monolayers. The membranes were built across Teflon films whose thickness varied from 6 to 25 mum. The building up of the membranes was followed by recording the capacitance of the membranes during the entire process of their formation. It is observed that the specific capacitance increases by about 10% as the thickness of the film is increased. Furthermore, during formation of the membrane it is observed that the capacitance values increased markedly immediately before the membranes are completely formed and then suddenly decrease to their normal values when formed (closing-off phenomenon). These results have led us to propose that the transition region known to surround membranes formed from monolayers may affect the capacitance values measured for such membranes. However, this effect is indirect in the sense that the composition (most likely in the form of inverted micelles) of the transition region will ultimately modify the hydrophobic/hydrophilic barrier in the bilayer by affecting the lateral tension known to exist in such membranes and, as a consequence, the average molecular area occupied by a phospholipid molecule in the bilayer. By such a mechanism, one can rationalize our experimental finding that the membrane capacitance varies as a function of the partition thickness across which they are prepared. It also rationalizes the large fluctuations in capacitance values usually found in the literature for such membranes as well as, at least in part, the closing-off phenomenon.  相似文献   

5.
We investigated the manner in which planar phospholipid membranes form when monolayers are sequentially raised. Simultaneous electrical and optical recordings showed that initially a thick film forms, and the capacitance of the film increases with the same time course as the observed thinning. The diameter of fully thinned membranes varies from membrane to membrane and a torus is readily observed. The frequency-dependent admittance of the membrane was measured using a wide-bandwidth voltage clamp whose frequency response is essentially independent of capacitative load. The membrane capacitance dominates the total admittance and the membrane dielectric is not lossy. The specific capacitance of membranes of several mixtures was measured. A schematic diagram of the formation of these membranes is presented.  相似文献   

6.
The time course of a charge transfer through solvent-containing lipid bilayer membranes was measured in the range of 5 microseconds and 100 s. It is shown that a displacement charge value is proportional to the area of a torus surrounding the lipid bilayer membrane, but not to the black membrane area.  相似文献   

7.
Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins.  相似文献   

8.
Electrical capacitance of the planar bilayer lipid membrane (BLM) formed from hydrogenated egg lecithin (HEL) has been studied during many passages through the phase transition temperature. In contrast to the BLM from individual synthetic phospholipids, membranes from HEL did not demonstrate any capacitance change at the phase transition temperature maximum, as measured by differential scanning calorimeter at 52 degrees C. Instead, two temperatures have been discerned by capacitance records: thickening at 42-43 degrees C and thinning at 57-59 degrees C. The first temperature region is close to the transition temperature of dipalmitoyllecithin, whereas the second is close to that of distearoyllecithin, two main components of the HEL. It was suggested that capacitance measurements were able to reveal a phase separation in the BLM from HEL which was not detected by differential scanning calorimetry. The phase transition of the BLM from the liquid crystal state to the gel state is followed by thickening of the bilayer structure, partly due to a gauche- trans transition of lipid molecules but mainly due to redistribution of the solvent n-decane.  相似文献   

9.
The effects of α-tocopherol on electric properties of bilayer lipid membranes were investigated. Planar bilayer membranes formed by the Mueller-Rudin method were used. Voltammetric and chronopotentiometric measurements were performed using a four-electrode potentiostat-galvanostat. It was demonstrated that registration of membrane capacitance, resistance, and voltammetric characteristics provided information about the change in the structure and permeability of bilayer lipid membranes. The results suggested that incorporation of α-tocopherol into lipid membrane destabilized its structure and facilitated the electrogeneration of pores. The possible role of observed changes in physiological functions of α-tocopherol was discussed.  相似文献   

10.
The effects of alpha-tocopherol on electric properties of bilayer lipid membranes were investigated. Planar bilayer membranes formed by the Mueller-Rudin method were used. Voltammetric and chronopotentiometric measurements were performed using a four-electrode potentiostat-galvanostat. It was demonstrated that registration of membrane capacitance, resistance, and voltammetric characteristics provided information about the change in the structure and permeability of bilayer lipid membranes. The results suggested that incorporation of alpha-tocopherol into lipid membrane destabilized its structure and facilitated the electrogeneration of pores. The possible role of observed changes in physiological functions of alpha-tocopherol was discussed.  相似文献   

11.
We have monitored the effect of ergosterol on electrical capacitance and electrical resistance of the phosphatidylcholine bilayer membranes using chronopotentiometry method. The chronopotentiometric characteristic of the bilayers depends on constant-current flow through the membranes. For low current values, no electroporation takes place and the membrane voltage rises exponentially to a constant value described by the Ohm's law. Based on these kinds of chronopotentiometric curves, a method of the membrane capacitance and the membrane resistance calculations is presented.  相似文献   

12.
Summary The electric capacitance and conductance of a model membrane composed of a hydrophobic filter paper and a synthetic lipid analogue, i.e., dioleylphosphate, immersed in an electrolyte solution were observed with various frequencies ranging from 20 to 3×106 Hz. With successive increase of salt concentration in the external solution, the capacitance and conductance of the membrane increased discontinuously at a certain critical value of the external salt concentration. This variation of the capacitance and conductance of the membrane with the salt concentration was found to be reversible, and the critical value of salt concentration was independent of the adsorbed quantity of the lipid, and of the pore size of the filter paper as far as the adsorbed quantity of the dioleylphosphate was large.A theoretical analysis based on the membrane model for the filter paper-phospholipid system proposed in Part I of this series revealed that the dioleylphosphate impregnated in the filter paper changed its conformation from oil droplets or globular micelles to a number of bilayer membranes when the salt concentration reached the critical value for a given pair of electrolyte species and the membrane. The conformational change of the lipid analogue in the filter paper is discussed in connection with the ability of formation and stability of a black bilayer membrane of the dioleylphosphate.  相似文献   

13.
The basic electrical parameters of bilayer lipid membranes are capacitance and resistance. This article describes the application of chronopotentiometry to the research of lipid bilayers. Membranes were made from egg yolk phosphatidylcholine. The chronopotentiometric characteristic of the membranes depends on the current value. For low current values, no electroporation takes place and the voltage rises exponentially to a constant value. Based on these kinds of chronopotentiometric curves, a method of the membrane capacitance and the membrane resistance calculations are presented.  相似文献   

14.
The Journal of Membrane Biology - A charge pulse technique has been applied to studies of transport phenomena in bilayer membranes. The membrane capacitance can be rapidly charged (in less than a...  相似文献   

15.
The electrical capacity of planar bilayer lipid membranes (BLM) from natural hydrogenated egg lecithin (HEL) in n-decane at a temperature of phase transition was measured. The temperature of phase transition was determined calorimetrically to be 51 degrees C. The data obtained revealed a phase separation of HEL in BLM into two fractions, one freezing at 42-44 degrees C and one that is converted to a liquid-crystal state at 51-59 degrees C. It was assumed that the first fraction is rich in dipalmitoyl lecithin, and the second fraction is rich in distearoyl lecithin. Freezing and the transition to the liquid-crystal state were accompanied by an increase and decrease in membrane thickness, respectively, in part due to a displacement of the solvent from the torus to the planar part of the bilayer. The displacement of the solvent is explained by changes in the disjoining pressure in BLM, which arises across the lipid bilayer due to van der Waals forces of attraction between water layers on both sides of the BLM.  相似文献   

16.
A study concerning membrane contact and fusion phenomena was made for phospholipid spherical bilayer systems with respect to temperature. Specific temperatures were obtained for the spherical bilayer membranes of phosphatidyl choline (PC) and phosphatidyl serine (PS) which indicated a greater degree of membrane fusion and were designated Tf (the fusion temperature -- PC: 43 degrees C, PS: 38 degrees C). These temperatures were reduced by about 10 degrees C for the membranes incorporated with 20% lysophosphatidyl choline. The results of the contact and fusion observed in the spherical membranes are compared and discussed with the conductance characteristics of the PC and PS planar bilayer membranes as well as dissolution study on the phospholipid monolayers formed at the air/water interface with respect to temperature. Also, a possible molecular mechanism of membrane fusion is discussed in terms of the fluidity and instability of the membrane.  相似文献   

17.
Effect of cholesterol, divalent ions and pH on spherical bilayer membrane fusion was studied as a function of increasing temperature. Spherical bilayer membranes were composed of natural [phosphatidylcholine (PC) and phosphatidylserine (PS)] as well as synthetic (dipalmitoyl-PC, dimyristoyl-PC and dioleoyl-PC) phospholipids. Incorporation of cholesterol into the membrane (33% by weight) suppressed the fusion temperature and also greatly reduced the percentage of membrane fusion. The presence of 1 mM divalent ions (Ca++, Mg++ or Mn++) on both sides or one side of the PC membrane did not affect appreciably its fusion characteristic with temperature, but the PS membrane fusion with temperature was greatly enhanced by the presence of divalent ions. The variation of pH of the environmental solution in the range of 5.5 approximately 7.0 did not affect the membrane fusion characteristic. However, at pH 8.5, the fusion with respect to temperature was shifted toward the lower temperature by approximately 3degreesC for PC and PS membranes, and at pH 3.0 the opposite situation was observed as the fusion temperature was increased by 6degreesC for PS membranes and by 4degreesC for PC membranes The results seem to indicate that membrane fluidity and structural instability in the bilayer are important for membrane fusion to occur.  相似文献   

18.
This paper describes the application of chronopotentiometry to lipid bilayer research. The experiments were performed on bilayer lipid membranes composed of phosphatidylcholine and cholesterol and formed using the painting technique. Chronopotentiometric (U = f(t)) measurements were used to determine the membrane capacitance, resistance, and breakdown voltage as well as pore conductance and diameter.  相似文献   

19.
The concept of chemical capacitance as introduced by Hong and Mauzerall (Proc. Natl. Acad. Sci. U.S.A. 1974. 71:1564) is critically reexamined. This novel capacitance was introduced to explain the time-course of flash-induced photocurrents observed in lipid bilayer membranes containing porphyrins. According to Hong and Mauzerall, the chemical capacitance results from a combination of three fundamental capacitances: the geometric membrane capacitance and the two interfacial double layer capacitances. The concept of chemical capacitance is questioned for the following reasons: (i) The system analysis is insufficiently determinate. (ii) The measured chemical capacitance is approximately 0.16% of that predicted by the theory. (iii) The fact that only 20% of the membrane area is illuminated was not considered in the analysis. The latter point offers an alternative explanation of the capacitance in question: this capacitance may reflect that fraction of the total membrane capacitance that is photochemically active. If so, the concept of chemical capacitance lacks general significance.  相似文献   

20.
It is well established that Alzheimer's amyloid beta-peptides reduce the membrane barrier to ion transport. The prevailing model ascribes the resulting interference with ion homeostasis to the formation of peptide pores across the bilayer. In this work, we examine the interaction of soluble prefibrillar amyloid beta (Abeta(1-42))-oligomers with bilayer models, observing also dramatic increases in ion current at micromolar peptide concentrations. We demonstrate that the Abeta-induced ion conductances across free-standing membranes and across substrate-supported "tethered" bilayers are quantitatively similar and depend on membrane composition. However, characteristic signatures of the molecular transport mechanism were distinctly different from ion transfer through water-filled pores, as shown by a quantitative comparison of the membrane response to Abeta-oligomers and to the bacterial toxin alpha-hemolysin. Neutron reflection from tethered membranes showed that Abeta-oligomers insert into the bilayer, affecting both membrane leaflets. By measuring the capacitance of peptide-free membranes, as well as their geometrical thicknesses, the dielectric constants in the aliphatic cores of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-diphytanoyl-sn-glycero-3-phosphocholine bilayers were determined to be epsilon = 2.8 and 2.2, respectively. The magnitude of the Abeta-induced increase in epsilon indicates that Abeta-oligomers affect membranes by inducing lateral heterogeneity in the bilayers, but an increase in the water content of the bilayers was not observed. The activation energy for Abeta-induced ion transport across the membrane is at least three times higher than that measured for membranes reconstituted with alpha-hemolysin pores, E(a) = 36.8 vs. 9.9 kJ/mol, indicating that the molecular mechanisms underlying both transport processes are fundamentally different. The Abeta-induced membrane conductance shows a nonlinear dependence on the peptide concentration in the membrane. Moreover, E(a) depends on peptide concentration. These observations suggest that cooperativity and/or conformational changes of the Abeta-oligomer particles upon transfer from the aqueous to the hydrocarbon environment play a prominent role in the interaction of the peptide with the membrane. A model in which Abeta-oligomers insert into the hydrophobic core of the membrane-where they lead to a local increase in epsilon and a concomitant reduction of the membrane barrier-describes the experimental data quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号