首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Flexible sequence-random polymers containing cationic and lipophilic subunits that act as functional mimics of host-defense peptides have recently been reported. We used bacteria and lipid vesicles to study one such polymer, having an average length of 21 residues, that is active against both Gram-positive and Gram-negative bacteria. At low concentrations, this polymer is able to permeabilize model anionic membranes that mimic the lipid composition of Escherichia coli, Staphylococcus aureus, or Bacillus subtilis but is ineffective against model zwitterionic membranes, which explains its low hemolytic activity. The polymer is capable of binding to negatively charged vesicles, inducing segregation of anionic lipids. The appearance of anionic lipid-rich domains results in formation of phase-boundary defects through which leakage can occur. We had earlier proposed such a mechanism of membrane disruption for another antimicrobial agent. Experiments with the mutant E. coli ML-35p indicate that permeabilization is biphasic: at low concentrations, the polymer permeabilizes the outer and inner membranes; at higher polymer concentrations, permeabilization of the outer membrane is progressively diminished, while the inner membrane remains unaffected. Experiments with wild-type E. coli K12 show that the polymer blocks passage of solutes into the intermembrane space at high concentrations. Cell membrane integrity in E. coli K12 and S. aureus exhibits biphasic dependence on polymer concentration. Isothermal titration calorimetry indicates that the polymer associates with the negatively charged lipopolysaccharide of Gram-negative bacteria and with the lipoteichoic acid of Gram-positive bacteria. We propose that this polymer has two mechanisms of antibacterial action, one predominating at low concentrations of polymer and the other predominating at high concentrations.  相似文献   

3.
We investigated melting transitions in native biological membranes containing their membrane proteins. The membranes originated from E. coli, B. subtilis, lung surfactant and nerve tissue from the spinal cord of several mammals. For some preparations, we studied the pressure, pH and ionic strength dependence of the transition. For porcine spine, we compared the transition of the native membrane to that of the extracted lipids. All preparations displayed melting transitions of 10–20° below physiological or growth temperature, independent of the organism of origin and the respective cell type. We found that the position of the transitions in E. coli membranes depends on the growth temperature.We discuss these findings in the context of the thermodynamic theory of membrane fluctuations close to transition that predicts largely altered elastic constants, an increase in fluctuation lifetime and in membrane permeability. We also discuss how to distinguish lipid melting from protein unfolding transitions. Since the feature of a transition slightly below physiological temperature is conserved even when growth conditions change, we conclude that the transitions are likely to be of major biological importance for the survival and the function of the cell.  相似文献   

4.
Fluorine-19 labeled compounds have been incorporated into lipids and proteins of Escherichia coli. 19F-Labeled membrane vesicles, prepared by growing a fatty acid auxotroph of a d-lactate dehydrogenase-deficient strain on 8,8-difluoromyristic acid, can be reconstituted for oxidase and transport activities by binding exogenous d-lactate dehydrogenase. 19F-Labeled d-lactate dehydrogenases prepared by addition of fluorotryptophans to a tryptophan-requiring strain are able to reconstitute d-lactate dehydrogenase-deficient membrane vesicles. Thus, lipid and protein can be labeled independently and used to investigate protein-lipid interactions in membranes.  相似文献   

5.
Solid-state nuclear magnetic resonance (NMR) is a useful tool to probe the organization and dynamics of phospholipids in bilayers. The interactions of molecules with membranes are usually studied with model systems; however, the complex composition of biological membranes motivates such investigations on intact cells. We have thus developed a protocol to deuterate membrane phospholipids in Escherichia coli without mutating to facilitate 2H solid-state NMR studies on intact bacteria. By exploiting the natural lipid biosynthesis pathway and using perdeuterated palmitic acid, our results show that 76% deuteration of the phospholipid fatty acid chains was attained. To verify the responsiveness of these membrane-deuterated E. coli, the effect of known antimicrobial agents was studied. 2H solid-state NMR spectra combined to spectral moment analysis support the insertion of the antibiotic polymyxin B lipid tail in the bacterial membrane. The use of membrane-deuterated bacteria was shown to be important in cases where antibiotic action of molecules relies on the interaction with lipopolysaccharides. This is the case of fullerenol nanoparticles which showed a different effect on intact cells when compared to dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol membranes. Our results also suggest that membrane rigidification could play a role in the biocide activity of the detergent cetyltrimethyammonium chloride. Finally, the deuterated E. coli were used to verify the potential antibacterial effect of a marennine-like pigment produced by marine microalgae. We were able to detect a different perturbation of the bacteria membranes by intra- and extracellular forms of the pigment, thus providing valuable information on their action mechanism and suggesting structural differences.  相似文献   

6.
Fluorescence of the conjugated polyene fatty acid, parinaric acid (PnA), was studied in membranes of Escherichia coli during deenergization by colicin K. The free fatty acid and biosynthetically esterified forms of cis-PnA (9,11,13,15-cis,trans,trans,cis-octadecatetraenoic acid), both of which are sensitive to E. coli lipid-phase transitions, were compared. When free cis-PnA was added exogenously to respiring bacteria, dissipation of the energized state of the membrane resulted in a dramatic increase in cis-PnA fluorescence; all-trans-PnA was much less sensitive. Neither spectral shifts nor a change in cis-PnA fluorescence polarization were observed. Analysis of the PnA content of extracellular fractions of deenergized and control cells revealed a difference in probe distribution: the membranes of energy-poisoned E. coli bound about 77% of exogenously added cis-PnA, whereas membranes of actively respiring controls bound only about 44%. No fluorescence enhancement was observed in cells centrifuged to remove unbound cis-PnA before colicin treatment. When cis-PnA was biosynthetically esterified to phospholipids of an unsaturated fatty acid auxotroph of E. coli, the fluorescence did not change during membrane deenergization. In double-probe experiments, membrane deenergization resulted in fluorescence enhancement of exogenously added N-phenyl-1-naphthylamine, without change in esterified PnA fluorescence. We conclude that deenergization of E. coli membranes leads to increased binding and fluorescence of exogenously added PnA and cannot be detected from within the inner and outer membranes by PnA esterified in vivo.  相似文献   

7.
Cell labeling is a preliminary step in multiple biophysical approaches, including the solid-state nuclear magnetic resonance (NMR) study of bacteria in vivo. Deuterium solid-state NMR has been used in the past years to probe bacterial membranes and their interactions with antimicrobial peptides, following a standard labeling protocol. Recent results from our laboratory on a slow-growing bacterium has shown the need to optimize this protocol, especially the bacterial growth time before harvest and the concentration of exogenous labeled fatty acids to be used for both Escherichia coli and Bacillus subtilis. It is also essential for the protocol to remain harmless to cells while providing optimal labeling. We have therefore developed a fast and facile approach to monitor the lipid composition of bacterial membranes under various growth conditions, combining solution 31P NMR and GCMS. Using this approach, the optimized labeling conditions of Escherichia coli and Bacillus subtilis with deuterated palmitic acid were determined. Our results show a modification of B. subtilis phospholipid profile as a function of the growth stage, as opposed to E. coli. Our protocol recommends low concentrations of exogenous palmitic acid in the growth medium, and bacteria harvest after the exponential phase.  相似文献   

8.
Illumination of biological membranes with visible light in the presence of membrane-active sensitizers (e.g. rose bengal) is known to inactivate transport proteins such as ion channels and ion pumps. In some cases, however, illumination gives rise to an activation of transport. This is shown here for ion channels formed by alamethicin in lipid membranes, and for porin channels, which were isolated from the outer membrane of E. coli (OmpC) and from the outer membrane of mitochondria (VDAC) and were reconstituted in lipid membranes. An activation (in the form of an increased conductance) was also observed in the presence of the cation carriers valinomycin and nonactin. The activation phenomena were only present, if the membranes were made from lipids containing unsaturated double bonds. Activation was reduced in the presence of the antioxidant vitamin E.We suggest that the activation of the different transport systems has a common physical basis, namely an increase of the dielectric constant, εm, of the membrane interior by the presence of polar oxidation products of photodynamically induced lipid peroxidation. Experimental evidence for an enhanced dielectric constant was obtained from the finding of a light-induced increase of the membrane capacitance in the presence of rose bengal.  相似文献   

9.
In PBP4a, a Bacillus subtilis class-C1 penicillin-binding protein (PBP), four clustered lysine (K) residues, K86, K114, K119, and K265, protrude from domain II. Replacement of these amino acids with glutamine (Q) residues by site-directed mutagenesis yielded Mut4KQ PBP4a. When produced in Escherichia coli without its predicted Sec-signal peptide, wild-type (WT) PBP4a was found mainly associated with the host cytoplasmic membrane, whereas Mut4KQ PBP4a remained largely unbound. After purification, the capacities of the two proteins to bind to B. subtilis membranes were compared. The results were similar to those obtained in E. coli: in vitro, a much higher percentage of WT PBP4a than of Mut4KQ PBP4a was found to interact with B. subtilis membranes. Immunodetection of PBP4a in B. subtilis membrane extracts revealed that a processed form of this PBP (as indicated by its size) associates with the B. subtilis cytoplasmic membrane. In the absence of any amphiphilic peptide in PBP4a, the crown of positive charges on the surface of domain II is likely responsible for the cellular localization of this PBP and its attachment to the cytoplasmic membrane.  相似文献   

10.
Cells control their own hydration by accumulating solutes when they are exposed to high osmolality media and releasing solutes in response to osmotic down-shocks. Osmosensory transporters mediate solute accumulation and mechanosensitive channels mediate solute release. Escherichia coli serves as a paradigm for studies of cellular osmoregulation. Growth in media of high salinity alters the phospholipid headgroup and fatty acid compositions of bacterial cytoplasmic membranes, in many cases increasing the ratio of anionic to zwitterionic lipid. In E. coli, the proportion of cardiolipin (CL) increases as the proportion of phosphatidylethanolamine (PE) decreases when osmotic stress is imposed with an electrolyte or a non-electrolyte. Osmotic induction of the gene encoding CL synthase (cls) contributes to these changes. The proportion of phosphatidylglycerol (PG) increases at the expense of PE in cls bacteria and, in Bacillus subtilis, the genes encoding CL and PG synthases (clsA and pgsA) are both osmotically regulated. CL is concentrated at the poles of diverse bacterial cells. A FlAsH-tagged variant of osmosensory transporter ProP is also concentrated at E. coli cell poles. Polar concentration of ProP is CL-dependent whereas polar concentration of its paralogue LacY, a H+-lactose symporter, is not. The proportion of anionic lipids (CL and PG) modulates the function of ProP in vivo and in vitro. These effects suggest that the osmotic induction of CL synthesis and co-localization of ProP with CL at the cell poles adjust the osmolality range over which ProP activity is controlled by placing it in a CL-rich membrane environment. In contrast, a GFP-tagged variant of mechanosensitive channel MscL is not concentrated at the cell poles but anionic lipids bind to a specific site on each subunit of MscL and influence its function in vitro. The sub-cellular locations and lipid dependencies of other osmosensory systems are not known. Varying CL content is a key element of osmotic adaptation by bacteria but much remains to be learned about its roles in the localization and function of osmoregulatory proteins.  相似文献   

11.
12.
Substantial amounts of exogenously supplied cholesterol were incorporated into the membranes of Escherichia coli during growth and caused a large decrease in membrane fluidity. Although no compensatory changes in fatty acid composition were observed, the incorporation of cholesterol did not affect the rate of growth of E. coli or interfere with the changes in fatty acid composition which normally occur during growth at different temperatures.  相似文献   

13.
The lipid phase transition of Escherichia coli was studied by high sensitivity differential scanning calorimetry. A temperature sensitive unsaturated fatty acid auxotroph was used to obtain lipids with subnormal unsaturated fatty acid contents. From these studies it was concluded that E. coli can grow normally with as much as 20% of its membrane lipids in the ordered state but that if more than 55% of the lipids are ordered, growth ceases. Studies with wild-type cells show that the phase transition ends more than 10°C below the growth temperature when the growth temperature when the growth temperature is either 25°C or 37°C.  相似文献   

14.
The specificity of the action of polymyxin B was studied using liposomes as a model membrane system. Liposomes prepared from total lipids of Gram-negative bacteria Escherichia coli, a mixture of purified E. coli phosphatidylethanolamine and cardiolipin and a mixture of phosphatidylethanolamine and phosphatidylglycerol, were extremely sensitive to polymyxin while those prepared from lipids of Gram-positive bacteria Streptococcus sanguis, lipids of sheep erythrocyte membranes, mixtures of egg lecithin and negatively charged amphiphatic molecules, were less sensitive to the action of the antibiotic. Chlolesterol was shown to suppress the polymyxin-induced response in liposomes.  相似文献   

15.
Lipoic acid is an essential cofactor required for the function of key metabolic pathways in most organisms. We report the characterization of a Bacillus subtilis mutant obtained by disruption of the lipA (yutB) gene, which encodes lipoyl synthase (LipA), the enzyme that catalyzes the final step in the de novo biosynthesis of this cofactor. The function of lipA was inferred from the results of genetic and physiological experiments, and this study investigated its role in B. subtilis fatty acid metabolism. Interrupting lipoate-dependent reactions strongly inhibits growth in minimal medium, impairing the generation of branched-chain fatty acids and leading to accumulation of copious amounts of straight-chain saturated fatty acids in B. subtilis membranes. Although depletion of LipA induces the expression of the Δ5 desaturase, controlled by a two-component system that senses changes in membrane properties, the synthesis of unsaturated fatty acids is insufficient to support growth in the absence of precursors for branched-chain fatty acids. However, unsaturated fatty acids generated by deregulated overexpression of the Δ5 desaturase functionally replaces lipoic acid-dependent synthesis of branched-chain fatty acids. Furthermore, we show that the cold-sensitive phenotype of a B. subtilis strain deficient in Δ5 desaturase is suppressed by isoleucine only if LipA is present.Lipoic acid (LA; 6,8-thioctic acid or 1,2-dithiolane-3-pentanoic acid) is a sulfur-containing cofactor required for the function of several key enzymes involved in oxidative and single-carbon metabolism, including pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, branched-chain 2-oxoacid dehydrogenase (BCKADH), acetoin dehydrogenase, and the glycine cleavage system (10). Lipoate-requiring complexes typically contain three protein subunits, E1, E2, and E3. LA is linked through an amide bond to lysine residues in the E2 subunits (42) and acts as a swinging arm, transferring covalently attached reaction intermediates among the active sites of the enzyme complexes (40).Although the general role of LA as a bound cofactor has been known for decades, the mechanisms by which LA is synthesized and becomes linked to its cognate proteins in different organisms continue to be elucidated. The reactions whereby LA-modified proteins are produced are best understood in Escherichia coli. In this organism, lipoylation is mediated by two separate enzymes, lipoyl protein ligase A (LplA) and octanoyl-acyl carrier protein-protein transferase (LipB) (30, 31). While LplA uses exogenous LA, LipB transfers endogenous octanoic acid to the target proteins (19). These octanoylated domains are then converted into lipoylated derivatives by the S-adenosyl-l-methionine-dependent enzyme lipoyl synthase (LipA), which catalyzes the insertion of sulfur atoms into the carbon-6 and -8 positions of the corresponding fatty acids (29). This process bypasses the requirement for an exogenous supply of LA.In contrast to the wealth of knowledge available on LA synthesis and utilization in E. coli, the existing information about these pathways in gram-positive bacteria is scarce. It has been found that Listeria monocytogenes mutants defective in proteins homologous to the E. coli LplA enzymes are unable to scavenge exogenous LA for modification of lipoyl domains (22, 23, 38). However, L. monocytogenes is a natural lipoate auxotroph since it does not encode the enzymes necessary for lipoate biosynthesis (15, 55). Bacillus subtilis synthesizes LA, but the biosynthesis, attachment, and function of this essential nutrient in this model gram-positive organism have not yet been studied in detail (50). Analysis of the genome sequence of B. subtilis (25) revealed that it contains an open reading frame, yutB, encoding a protein with a high degree of homology to E. coli LipA and two open reading frames encoding proteins slightly similar to LplA, while no LipB homolog was detected.LA is a critical cofactor of BCKADH, the enzyme involved in the formation of the primer carbons for the initiation of branched-chain fatty acid (BCFA) synthesis (21). Early work indicated that a bfmB mutant of B. subtilis, defective in both BCKADH and pyruvate dehydrogenase, requires short-branched-chain carboxilic acids for growth (56). However, in our hands, this mutant presented a high percentage of reversion, precluding its use in the study of lipid metabolism. Since BCFAs are the dominant acyl chains found in membrane phospholipids of B. subtilis, the goal of this study was to employ a genetic approach to investigate the role of yutB in the physiology of this organism, in particular in fatty acid metabolism. In addition, we provide compelling evidence showing that Δ5 unsaturated fatty acids (UFA), the products of the B. subtilis desaturase, can fully replace the function of BCFAs. Furthermore, we demonstrate that UFA are essential to provide cryoprotective properties in strains depleted of LipA. This work reports the first characterization of a gram-positive mutant deficient in LA synthesis and its use to study the interplay between BCFAs and UFA metabolism.  相似文献   

16.

Background

Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7) and one ribosomal RNase domain (E3) using a biomembrane model system.

Principal Results

We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed.

Conclusions/Significance

Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation.  相似文献   

17.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

18.
Cationic antimicrobial peptides (CAMPs) are novel candidates for drug development. Here we describe design of six short and potent CAMPs (SA-1 to SA-6) based on a minimalist template of 12 residues H+HHG+HH+HH+NH2 (where H: hydrophobic amino acid and +: charged hydrophilic amino acid). Designed peptides exhibit good antibacterial activity in micro molar concentration range (1-32 μg/ml) and rapid clearance of Gram-positive and Gram-negative bacterial strains at concentrations higher than MIC. For elucidating mode of action of designed peptides various biophysical studies including CD and Trp fluorescence were performed using model membranes. Further based on activity, selectivity and membrane bound structure; modes of action of Trp rich peptide SA-3 and template based peptide SA-4 were compared. Calcein dye leakage and transmission electron microscopic studies with model membranes exhibited selective membrane active mode of action for peptide SA-3 and SA-4. Extending our work from model membranes to intact E. coli ATCC 11775 in scanning electron micrographs we could visualize different patterns of surface perturbation caused by peptide SA-3 and SA-4. Further at low concentration rapid translocation of FITC-tagged peptide SA-3 into the cytoplasm of E. coli cells without concomitant membrane perturbation indicates involvement of intracellular targeting mechanism as an alternate mode of action as was also evidenced in DNA retardation assay. For peptide SA-4 concentration dependent translocation into the bacterial cytoplasm along with membrane perturbation was observed. Establishment of a non specific membrane lytic mode of action of these peptides makes them suitable candidates for drug development.  相似文献   

19.
RTA3 is an α-helical, amphipathic peptide with broad-spectrum activity against Gram-negative bacteria and low mammalian cell toxicity. RTA3 contains a cysteine residue, replacement of which with an alanine or serine (RTA3-C15S) virtually abolishes antimicrobial activity. Much of the activity of RTA3 can be recovered in RTA3-C15L, indicating that the C15 residue functions largely as a bulky hydrophobic side chain promoting target cell membrane interactions. The poorly active RTA3-C15S is a useful variant for assessing the mechanistic aspects of RTA3 activity. Binding and membrane perturbation in vesicles containing different proportions of negative surface charge are analyzed in terms of amino acid-specific free energy contributions to interfacial binding, which likely underlie variations in antimicrobial activity amongst RTA3 variants. Comparison with published free energy scales indicates that the reduced electrostatic contribution to binding to membranes having reduced negative surface charge can be compensated in RTA3 (but not RTA3-C15S) by a slightly deeper insertion of the C-terminus of the peptide to maximize hydrophobic contributions to binding. Analysis of inner membrane (IM)- and outer membrane (OM)-selective permeabilization of Escherichiacoli demonstrates a broad similarity between peptide effects on vesicles with low negative surface charge (20% negatively charged lipids), E.coli membrane perturbation, and antimicrobial activity, supporting a role for membrane perturbation in the killing mechanism of RTA3. The results demonstrate that large variations in antimicrobial activity on subtle changes in amino acid sequence in helical amphipathic peptides can be rationalized in terms of the thermodynamics of peptide binding to membranes, allowing a more systematic understanding of antimicrobial activity in these peptides.  相似文献   

20.
In the current study, indigenous bacterial isolates Bacillus subtilis VITSUKMW1 and Escherichia coli VITSUKMW3 from a chromite mine were adapted to 100 mg L?1 of Cr(VI). The phase contrast and scanning electron microscopic images showed increase in the length of adapted E. coli cells and chain formation in case of adapted B. subtilis. The presence of chromium on the surface of the bacteria was confirmed by energy dispersive X-ray spectroscopy (EDX), which was also supported by the conspicuous Cr–O peaks in FTIR spectra. The transmission electron microscopic (TEM) images of adapted E. coli and B. subtilis showed the presence of intact cells with Cr accumulated inside the bacteria. The TEM–EDX confirmed the internalization of Cr(VI) in the adapted cells. The specific growth rate and Cr(VI) reduction capacity was significantly higher in adapted B. subtilis compared to that of adapted E. coli. To study the possible role of Cr(VI) toxicity affecting the Cr(VI) reduction capacity, the definite assays for the released reactive oxygen species (ROS) and ROS scavenging enzymes (SOD and GSH) were carried out. The decreased ROS production as well as SOD and GSH release observed in adapted B. subtilis compared to the adapted E. coli corroborated well with its higher specific growth rate and increased Cr(VI) reduction capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号