首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
(1) In isolated chloroplasts (class B) electron flow is controlled mainly by the intrathylakoid pH (pHin). A decrease in pHin due to the light-driven injection of protons inside the thylakoid leads to the retardation of electron flow between two photosystems. This effect can be abolished by uncouplers or under photophosphorylation conditions (addition of Mg2+-ADP with Pi); Mg2+-ATP does not influence the steady-state rate of electron flow, (2) The steady-state pH difference, ΔpH, across the thylakoid membrane was estimated from quantitative analysis of the rate of P-700+ reduction. In chloroplasts, without adding Mg2+-ADP, ΔpH increases from 1.6 to 3.2 as the external pH rises from 6 to 9.5. Under the photophosphorylation conditions, ΔpH decreases showing a minimum at the external pH 7.5 (ΔpH ? 0.5–1.0). (3) The value of photosynthetic control, K, measured as the ratio of the steady-state rates of P-700+ reduction in the presence of Mg2+-ADP (with Pi) and without adding Mg2+-ADP is dependent on external pH variations, showing a maximum value of K ? 3.5 at pHout 7.5. This pH dependence coincides with that of the ADP-stimulated ΔpH decrease. (4) Experiments with spin labels provide evidence that the light-induced changes in the thylakoid membrane are sensitive to the addition of uncouplers and are affected only slightly by the addition of Mg2+-ADP and Pi.  相似文献   

3.
William S. Cohen  Walter Bertsch 《BBA》1974,347(3):371-382
The effect of 2,3,5,6-tetramethyl p-phenylenediamine-catalyzed cyclic electron flow on millisecond delayed light emission from chloroplasts has been compared to the effect on subchloroplast particles. Non-cyclic electron flow of both chloroplasts and subchloroplast particles was blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea. 2,3,5,6-tetramethyl p-phenylenediamine-catalyzed cyclic electron flow increased the millisecond delayed emission by 2–4 times in both chloroplasts and subchloroplast particles. Uncoupling conditions which collapse only the pH gradient component of the proton motive force reduced the 2,3,5,6-tetramethyl p-phenylenediamine stimulation of delayed light in chloroplasts but not in particles. The 2,3,5,6-tetramethyl p-phenylenediamine stimulation of delayed light in particles was sensitive to uncoupling conditions which are presumed to destroy the transmembrane potential. Energy transfer inhibitors were without effect on the 2,3,5,6-tetramethyl p-phenylenediamine stimulation in both chloroplasts and particles.

The 2,3,5,6-tetramethyl p-phenylenediamine stimulation of millisecond delayed emission appears to reflect the particular form of the proton motive force; in chloroplasts it seems to be correlated with the proton concentration gradient, whereas in particles it is more closely correlated with the transmembrane potential.  相似文献   


4.
Peter Horton 《BBA》1981,635(1):105-110
The effect of alteration of redox potential on the kinetics of fluorescence induction in pea chloroplasts has been investigated. Potentiometric titration of the initial (Fi) level of fluorescence recorded upon shutter opening gave a two component curve, with Em(7) at ?20 mV and ?275 mV, almost, identical to results obtained using continuous low intensity illumination (Horton, P. and Croze, E. (1979) Biochim. Biophys. Acta 545, 188–201). The slow or tail phase of induction observed in the presence of DCMU can be eliminated by poising the redox potential at approx. 0 to +50 mV. At this potential Fi was increased by less than 10% and the higher potential quencher described above was only marginally reduced. The disappearance of the slow phase titrated as an n = 1 component with an Em(7) of +120 mV. Therefore it seems unlikely that the slow phase of fluorescence induction is due to photoreduction of the ?20 mV quencher. These results are discussed with reference to current ideas concerning heterogeneity on the acceptor side of Photosystem II.  相似文献   

5.
A method is reported for the in situ modification of the lipids of isolated spinach chloroplast membranes. The technique is based on a direct hydrogenation of the lipid double bonds in the presence of the catalyst, chlorotris(triphenylphosphine)rhodium (I). The pattern of hydrogenation achieved suggests that the catalyst distributes amongst all of the membranes. The polyunsaturated lipids within the membranes are hydrogenated at a faster rate and at an earlier stage than are the monoenoic lipids.Whilst addition of the catalyst to the chloroplast causes an initial 10–20% decrease in Hill activity, saturation of up to 40% of the double bonds present can be accomplished without causing further significant alterations in photosynthetic electron transport processes or marked morphological changes of the chloroplast structure as observed in the electron microscope.  相似文献   

6.
Ta-Yan Leong  Jan M. Anderson 《BBA》1983,723(3):391-399
The hypothesis that chloroplasts having different light-saturated rates of photosynthesis will have different proportions of the intrinsic thylakoid complexes engaged in light-harvesting and electron transport (Anderson, J.M. (1982) Mol. Cell. Biochem. 46, 161–172) has been tested. Peas were grown in light regimes which varied in light intensity, quality and time of irradiance, and ranged from sunlight through red to blue-enriched light of very low radiation. The electron-transport capacity at saturating light of Photosystem I and Photosystem II of chloroplasts isolated from light-adapted peas was 2-fold and 5–6-fold lower, respectively, in the lowest radiation compared to sunlight. There was a marked increase in the amount of total chlorophyll associated with the main chlorophyll ab-proteins (LHCP1, LHCP2 and LHCP3) and a 2-fold decrease in the core reaction centre complex of Photosystem II (CP a) as the radiation decreased; the LHCP1–3CP a ratio changed from 3.5 to 9.0. The amount of chlorophyll associated with Photosystem I varied from 34% in sunlight to 27% in the lowest radiation, but the antenna size of Photosystem I was not markedly different; there was a 2-fold decrease in the amount of cytochrome f on a chlorophyll basis, which partly accounted for the decreased electron-transport capacity of Photosystem I. Since the increases or decreases in the levels of each of the components correlated with decreasing radiation, it is clear that the light-adaptation of both light-harvesting and electron-transport components is indeed closely co-ordinated.  相似文献   

7.
G. Renger  H.J. Eckert 《BBA》1981,638(1):161-171
The role of the protein matrix embedding the functionally active redox components of Photosystem II reaction centers has been studied by investigating the effects of procedures which modify the structure of proteins. In order to reduce the influence of the electron transport involving secondary donor and acceptor components, Triswashed chloroplasts were used which are completely deprived of their oxygen-evolving capacity. The functional activity was detected via absorption changes, reflecting at 334 and 690 or 834 nm the turnover of the primary plastoquinone acceptor, X320, and of the photochemically active chlorophyll a complex, Chl aII, respectively, and at 520 nm the transient formation of a transmembrane electric potential gradient. Under repetitive flash excitation of Tris-washed chloroplasts it was found that: (a) The relaxation kinetics at 690 nm become significantly accelerated in the presence of external electron donors. (b) Trypsin treatment blocks to a high degree the turnover of Chl aII and X320 unless exogenous acceptors are present, which directly oxidize X320?, such as K3Fe(CN)6. (c) In the presence of K3Fe(CN)6 the recovery kinetics of Chl aII and X320 are retarded markedly by trypsin, followed by a progressive decline in the extent thereof. (d) 2-(3-Chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), known to reduce the lifetime of S2 and S3 in normal chloroplasts, significantly accelerates the recovery of Chl aII. 10 μs kinetics are observed which correspond with the electron-transfer rate from D1 to Chl a+II. ANT 2p simultaneously retards the decay kinetics of X320? and of the electrochromic absorption changes. (e) The kinetic pattern of the electrochromic absorption changes is also affected by the salt content of the suspension. Under dark-adapted conditions, the 10 μs relaxation kinetics of the 834 nm absorption change due to the first flash are hardly affected by mild trypsinization of 5–10 min duration, whereas the amplitude decreases by approx. 30%. The data obtained in Tris-washed chloroplasts could consistently be interpreted as a modification of the back reaction between X320? and Chl a+II which is caused solely by a change in the reactivity of X320 due to trypsin-induced degradation of the native X320-B apoprotein. Furthermore, ADRY agents are inferred to stimulate cyclic electron flow, which leads to reduction of D+1 between the flashes. A simplified scheme is discussed which describes the functional organization of the reaction center complex.  相似文献   

8.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

9.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):443-451
Redox titration of the electrochromic carotenoid band shift, detected at 50 μs after a saturating actinic flash, in spinach chloroplasts, shows that only one electron acceptor in Photosystem II participates in a transmembrane primary electron transfer. This species, the primary quinone acceptor, Q, shows only one midpoint potential (Em,7.5) of approx. 0 V and is undoubtedly equivalent to the fluorescence quencher, QH. A second titration wave is observed at low potential (Em,7.5 ? ? 240 mV) and at greater than 3 ms after a saturating actinic flash. This wave has an action spectrum different from that of Photosystem II centers containing Q and could arise from a secondary but not primary electron transfer. A low-potential fluorescence quencher is observed in chloroplasts which largely disappears in a single saturating flash at ? 185 mV and which does not participate in a transmembrane electron transfer. This low-potential quencher (probably equivalent to fluorescence quencher, QL) and Q are altogether different species. Redox titration of C550 shows that if electron acceptor Qβ is indeed characterized by an Em,7 of + 120 mV, then this acceptor does not give rise to a C550 signal upon reduction and does not participate in a transmembrane electron transfer. This titration also shows that C550 is not associated with QL.  相似文献   

10.
The oxidation of NADPH and NADH was studied in the light and in the dark using sonically derived membrane vesicles and osmotically shocked spheroplasts. These two types of cell-free membrane preparations mostly differ in that the cell and thylakoid membranes are scrambled in the former type and that they are more or less separated in the latter type of preparations. In the light, using both kinds of preparations, each of NADPH and NADH donates electrons via the plastoquinone-cytochrome bc redox complex (Qbc redox complex) to the thylakoid membrane-bound cytochrome c-553 preoxidized by a light flash and to methylviologen via Photosystem I. NADPH donates electrons to the thylakoid membrane via a weakly rotenone-sensitive dehydrogenase to a site that is situated beyond the 3(3′,4′-dichlorophenyl)-1,1-dimethylurea sensitive site and before plastoquinone. Ferredoxin and easily soluble cytoplasmic proteins are presumably not involved in light-mediated NADPH oxidation. Inhibitors of electron transfer at the Qbc redox complex as the dinitrophenylether of 2-iodo-4-nitrothymol, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2-n-heptyl-4-hydroxy-quinone-N-oxide are effective, but antimycin A and KCN are not. The oxidation of NADH showed comparable sensitivity to these inhibitors. However, the oxidation of NADH is antimycin-A-sensitive regardless of the kind of membrane preparation used, indicating that in this case electrons are donated to a different site on the thylakoid membrane. In the dark, NADPH and NADH donate electrons at sites that behave similar to those of light-mediated oxidation, indicating that the initial steps of electron transfer are situated at the thylakoid membranes. However, NADPH oxidation is in some cases not sensitive to inhibitors active at the Qbc redox complex. It is concluded that O2 reduction takes place at two different sites, one partly developed in vitro, situated near the rotenone-sensitive NADPH dehydrogenase, and another, highly KCN-sensitive one, situated beyond the Qbc redox complex and used in vivo. The terminal oxygen-reducing step of NADPH and NADH oxidation in the dark showed a preparation-dependent sensitivity for KCN, more than 80% inhibition in sonically derived membrane vesicles and less than 30% inhibition in osmotically shocked spheroplasts. From this result we tentatively conclude that the highly KCN-sensitive oxidase is not necessarily located at the thylakoid membrane and could be located at the cytoplasmic membrane.  相似文献   

11.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   

12.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 °C, 40 s). Under these circumstances, the K peak (∼ F400 μs) appears in the chl a fluorescence (OJIP) transient reflecting partial QA reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating QA accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this QA accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t1/2 ∼ 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   

13.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

14.
Jane M. Bowes  Peter Horton 《BBA》1982,680(2):127-133
Fluorescence induction curves in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-inhibited Photosystem (PS) II particles isolated from the blue-green alga Phormidium laminosum have been analysed as a function of redox potential. Redox titration of the initial fluorescence indicated a single component with Em,7.5 = +30 mV (n = 1) (Bowes, J., Horton, P. and Bendall, D.S. (1981) FEBS Lett. 135, 261–264). Despite this simplified electron acceptor system and the small number of chlorophylls per reaction centre, a sigmoidal induction curve was nevertheless seen. Sigmoidicity decreased as Q was reduced potentiometrically prior to induction such that the induction was exponential when the ratio FiFm = 0.64. These particles also showed a slow (β) phase of induction which titrated with an Em value slightly more positive than that of the major quencher. It is concluded that the sigmoidal shape of the fluorescence induction curve observed in Phormidium PS II particles is not a consequence of a requirement for two photons to close the PS II reaction centre, but is generated as a result of energy transfer between photosynthetic units comprising one reaction centre per approx. 50 chlorophylls. Also, the existence of PS II heterogeneity (PS IIα, PS IIβ centres) does not require a structurally differentiated chloroplast, but may only indicate the extent of aggregation of PS II centres.  相似文献   

15.
1. In subchloroplast fragments prepared with the detergent deoxycholate the primary reactions of Photosystem II could be studied at room temperature, because the secondary reactions were largely or completely inhibited.

2. The main quencher of chlorophyll fluorescence in these particles was the photosynthetically active pool of plastoquinone in its oxidized form. Its photoreduction in the presence of artificial electron donors was accompanied by a shift of a chlorophyll a absorption band. Its reoxidation in the dark was very slow, even in the presence of ferricyanide.

3. Of all the artificial electron donors tested MnCl2 was by far the most efficient.

4. Measurements at room temperature of the C550 absorbance change confirmed its correlation with the primary electron acceptor. Its difference spectrum was broader and its extinction coefficient correspondingly lower than at liquid-N2 temperature. In chloroplasts the C550 concentration was about 1:360 chlorophylls.

5. In the dark C550 was largely in the reduced state and its oxidation by plastoquinone took place in the presence of an artificial electron donor only, suggesting that the redox potential of C550 was increased by accumulated positive charges at the donor side of the reaction center.

6. The free radical 1,1′-diphenyl-2-picrylhydrazyl oxidized C550 directly in a 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-insensitive reaction. A DCMU-insensitive oxidation of C550 was observed at high ferricyanide concentrations as well, but probably in this case an endogenous electron donor was oxidized, which in turn oxidized C550 via the back reaction of the photochemical reaction.

7. The oxidized form of the primary electron donor, P680+, accumulated in the light in the presence of deoxycholate and a low ferricyanide concentration. In chloroplasts the P680 concentration was about 1:360 chlorophylls.

8. The P 680 absorption difference spectrum and electron spin resonance could be explained by the oxidation of a chlorophyll a dimer. Repeated deoxycholate treatments progressively changed the spectra to those of a monomer. The monomer was still photochemically active.

9. A new interpretation of the difference spectrum of P700 is proposed: it may be the same as that of the difference spectrum of P680 if the bleaching at 700 nm is attributed to a band shift.  相似文献   


16.
In photosynthetic chains, the kinetics of fluorescence yield depends on the photochemical rates at the level of both Photosystem I and II and thus on the absorption cross section of the photosynthetic units as well as on the coupling between light harvesting complexes and photosynthetic traps. A new set-up is described which, at variance with the commonly used set-ups, uses of a weakly absorbed light source (light-emitting diodes with maximum output at 520 nm) to excite the photosynthetic electron chain and probe the resulting fluorescence yield changes and their time course. This approach optimizes the homogeneity of the exciting light throughout the leaf and we show that this homogeneity narrows the distribution of the photochemical rates. Although the exciting light is weakly absorbed, the possibility to tune the intensity of the light emitting diodes allows one to reach photochemical rates ranging from 104 s− 1 to 0.25 s− 1 rendering experimentally accessible different functional regimes. The variations of the fluorescence yield induced by the photosynthetic activity are qualitatively and quantitatively discussed. When illuminating dark-adapted leaves by a weak light, the kinetics of fluorescence changes displays a pronounced plateau which precedes the fluorescence increase reflecting the full reduction of the plastoquinone pool. We ascribe this plateau to the time delay needed to reduce the photosystem I electron acceptors.  相似文献   

17.
(1) The effect of feeding a relatively low-protein diet containing 0.06% DAB for 29 weeks on the activity of DAB-azoreductase, nitroreductase (p-nitrobenzoic acid), N-oxidase (N,N-dimethylaniline), N-demethylase (DAB), cytochrome P-450, NADPH-cytochrome c reductase, beta-glucuronidase and arylsulphatase A were studied. Rapid decreases occurred in the activities of the first six enzymes, reaching minimal values at between 4 and 8 weeks. Activities then increased in all cases to control or nearly control levels. This rate of increase was least for cytochrome P-450. At 4 weeks azoreductase activity with the chemotherapeutic agent CB10-252 (I) as substrate was significantly higher than in control rats. Early increases occurred in the activities of beta-glucuronidase and arylsulphatase A and the activity of the latter never dropped below the control level. (2) An investigation was made of the differential effects of dye feeding on some of the enzyme activities in the two major liver lobes and differences were found. (3) The effect of phenobarbital (PB) pretreatment on the DAB-fed rats was studied at 4-week intervals. The activities of DAB-azoreductase and of nitroreductase increased throughout the whole period, while the activities of the lysosomal enzymes were decreased. (4) After feeding DAB for 4 weeks the effect of PB and 3-methylcholanthrene (MC) on the activities of DAB-azoreductase, CB10-252-azoreductase and components of the azoreductases-cytochrome P-450, NADPH-cytochrome c reductase, the CO-CB10-252-azoreductase was not induced by PB or MC, and CO did not inhibit its reduction. Its reduction depended only slightly on NADH. CO caused a greater relative decrease in the activity of DAB-azoreductase in dye-fed animals and also in animals following PB and MC pretreatment, implying a greater role of cytochrome P-450 in dye-fed animals.  相似文献   

18.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

19.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

20.
After transferring the dark-acclimated cyanobacteria to light, flavodiiron proteins Flv1/Flv3 serve as a main electron acceptor for PSI within the first seconds because Calvin cycle enzymes are inactive in the dark. Synechocystis PCC 6803 mutant Δflv1flv3 devoid of Flv1 and Flv3 retained the PSI chlorophyll P700 in the reduced state over 10?s (Helman et al., 2003; Allahverdiyeva et al., 2013). Study of P700 oxidoreduction transients in dark-acclimated Δflv1flv3 mutant under the action of successive white light pulses separated by dark intervals of various durations indicated that the delayed oxidation of P700 was determined by light activation of electron transport on the acceptor side of PSI. We show that the light-induced redox transients of chlorophyll P700 in dark-acclimated Δflv1flv3 proceed within 2?min, as opposed to 1–3?s in the wild type, and comprise a series of kinetic stages. The release of rate-limiting steps was eliminated by iodoacetamide, an inhibitor of Calvin cycle enzymes. Conversely, the creation with methyl viologen of a bypass electron flow to O2 accelerated P700 oxidation and made its extent comparable to that in the wild-type cells. The lack of major sinks for linear electron flow in iodoacetamide-treated Δflv1flv3 mutant, in which O2- and CO2-dependent electron flows were impaired, facilitated cyclic electron flow, which was evident from the decreased steady-state oxidation of P700 and from rapid dark reduction of P700 during and after illumination with far-red light. The results show that the photosynthetic induction in wild-type Synechocystis PCC 6803 is largely hidden due to the flavodiiron proteins whose operation circumvents the rate-limiting electron transport steps controlled by Calvin cycle reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号