首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary When adenosine cyclic 2,3-phosphate is evaporated from solution in the presence of simple catalysts such as aliphatic diamines at alkaline pH, and maintained in a dry state at moderate temperatures (25-85°C), self-polymerization to give oligonucleotides of chainlength up to at least 6 is observed. The products contain an excess of [35]-linkages over [25]-linkages. The effects of different catalysts and reaction conditions on the efficiency of the reaction are described. The prebiological relevance of these reactions is discussed.  相似文献   

3.
4.
1. A microsomal fraction from ox cerebral cortex catalysed [(14)C]ADP-ATP exchange at a speed similar to that at which it liberated P(i) from ATP in the presence of Na(+), K(+) and Mg(2+). 2. Repeated washing the fraction with MgATP solutions solubilized most of the exchange activity and left the adenosine triphosphatase insoluble and little changed in activity. The exchange activity was accompanied by negligible adenosine-triphosphatase activity and was enriched by precipitation at chosen pH and by DEAE-Sephadex. At no stage was its activity affected by Na(+), K(+) or ouabain. 3. The washed microsomal fraction was exposed to a variety of reagents; a sodium iodide-cysteine treatment increased both adenosine-triphosphatase and exchange activities, as also did a synthetic zeolite. Preparations were obtained with exchange activities less than 3% of their Na(+)-plus-K(+)-stimulated adenosine-triphosphatase activity. Some contribution to the residual exchange activity was made by an adenylate kinase. 4. Thus over 95% of the microsomal ADP-ATP-exchange activity does not take part in the Na(+)-plus-K(+)-stimulated adenosine-triphosphatase reaction. Participation of some of the residual 3% of the ADP-ATP-exchange activity has not been excluded, but there appears no firm evidence for its participation in the adenosine triphosphatase; the bearing of this conclusion on mechanisms proposed for the Na(+)-plus-K(+)-stimulated adenosine triphosphatase is indicated.  相似文献   

5.
Y J Shyy  G Tian  M D Tsai 《Biochemistry》1987,26(20):6411-6415
Although the substrate binding properties of adenylate kinase (AK) have been studied extensively by various biochemical and biophysical techniques, it remains controversial whether uncomplexed adenosine 5'-triphosphate (ATP) binds to the adenosine 5'-monophosphate (AMP) site of AK. We present two sets of experiments which argue against binding of ATP to the AMP site. (a) 31P nuclear magnetic resonance titration of ATP with AK indicated a 1:1 stoichiometry on the basis of changes in coupling constants and line widths. This ruled out binding of ATP to both sites. (b) ATP and MgATP were found to behave similarly by protecting AK from spontaneous inactivation while AMP showed only a small degree of protection. Such inactivation could also be protected or reversed by dithioerythritol and is most likely due to oxidation of sulfhydryl groups, one of which (cysteine-25) is located near the MgATP site. The results support binding of ATP to the MgATP site predominantly, instead of the AMP site, in the absence of Mg2+.  相似文献   

6.
The regulatory role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ transport system of rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. The release of Ca2+ from the Ca2+-loaded nuclei was evoked progressively after Ca2+ uptake with 1.0 mM ATP addition, while it was only slightly in the case of 2.0 mM ATP addition, indicating that the consumption of ATP causes a leak of Ca2+ from the Ca2+-loaded nuclei. The presence of N-ethylmaleimide (NEM; 0.1 mM) caused an inhibition of nuclear Ca2+ uptake and induced a promotion of Ca2+ release from the Ca2+-loaded nuclei. NEM (0.1 and 0.2 mM) markedly inhibited nuclear Ca2+-ATPase activity. This inhibition was completely blocked by the presence of dithiothreitol (DTT; 0.1 and 0.5 mM). Also, DTT inhibited the effect of NEM (0.1 mM) on nuclear Ca2+ uptake and release. Meanwhile, verapamil and diltiazem (10 M), a blocker of Ca2+ channels, did not prevent the NAD+ (1.0 and 2.0 mM), zinc sulfate (1.0 and 2.5 M) and arachidonic acid (10 M)-induced increase in nuclear Ca2+ release, suggesting that Ca2+ channels do not involve on Ca2+ release from the nuclei. These results indicates that an inhibition of nuclear Ca2+-ATPase activity causes the decrease in nuclear Ca2+ uptake and the release of Ca2+ from the Ca2+-loaded nuclei. The present finding suggests that Ca2+-ATPase plays a critical role in the regulatory mechanism of Ca2+ uptake and release in rat liver nuclei.  相似文献   

7.
The elongation factor Tu (EF-Tu) dependent GTPase (in the presence of aurodox) is stimulated by analogs of the aminoacyl tRNA 3′-terminus in the following order: A-Phe < C-A-Phe < C-C-A-Phe. The GTPase-promoting activity of A-Phe is strongly enhanced by tRNA-C-C (devoid of 3′-terminal adenosine residue) but not by intact tRNA-C-C-A. On the other hand, the activity of C-A-Phe as the EF-Tu·GTPase promoter is only slightly enhanced by tRNA-C-C.  相似文献   

8.
Suspensions of rat brain microsomes, synaptosomes, and synaptic vesicles were able to convert adenosine to inosine by means of adenosine deaminase. Isosbestic points of this transformation, at 222, 250 and 281 nm, remained unchanged with time-course. This fact suggests that adenosine deaminase (ADA, E.C. 3.5.4.4) is located on the surface of the vesicles whereas purine nucleoside phosphorylase (PNP, E.C. 2.1.2.4) is located inside the vesicles. Kinetic parameters of the particulate 5-nucleotidase (5N, E.C. 3.1.3.5) and adenosine deaminase were analogous to those of the cytosolic enzymes. These results suggest that soluble and particulate enzymes represent different pools of the same molecular species.  相似文献   

9.
Experimental research over the past decade has supported the critical role of astrocytes activated by different types of injury and the pathophysiological processes that underlie the development of epilepsy. In both experimental and human epileptic tissues astrocytes undergo complex changes in their physiological properties, which can alter glio-neuronal communication, contributing to seizure precipitation and recurrence. In this context, understanding which of the molecular mechanisms are crucially involved in the regulation of glio-neuronal interactions under pathological conditions associated with seizure development is important to get more insight into the role of astrocytes in epilepsy.  相似文献   

10.
We have studied the reactions between adenosine 5′-phosphorimidazolide and various adenosine analogs on a poly(U) template. The nucleosides were adenosine (I), 2′-deoxyadenosine (II), 3′-deoxyadenosine (III), 2′-O-methyladenosine (IV), 3′-O-methyladenosine (V), 9-β-d-xylofuranosyladenine (VI), and 9-β-d-arabinofuranosyladenine (VII). We find that the various analogs form triple helices with poly(U) which are of comparable stability, but that only the β-riboside takes part in an efficient template-directed condensation.  相似文献   

11.
In human mast cells and microvascular endothelial cells, the A2B adenosine receptor controls at least three independent signaling pathways, i.e., Gs-mediated stimulation of adenylate cyclase, Gq-mediated stimulation of phospholipase Cβ, and Gs/Gq-independent upregulation of IL-8. Functional analysis of cells transfected with full-length and truncated receptor constructs revealed that the A2B receptor C-terminus is important for coupling to Gs and Gq proteins. Removal of the entire cytoplasmic portion in the A2B receptor C-terminus rendered it incapable of stimulating adenylate cyclase and phospholipase Cβ. Conversely, removal of the distal 16 amino acids facilitated signal transduction from the receptor to the downstream Gs but not Gq proteins. However, the A2B receptor C-terminus is not essential for upregulation of IL-8. Analysis of chimeric A2A/A2B receptors demonstrated that only chimeras containing the third intracellular loop of the A2B receptor mediated agonist-dependent IL-8 reporter stimulation, suggesting that this domain is important for upregulation of IL-8.  相似文献   

12.
A single mutation in the oli2 region of the mitochondrial DNA causes a charge alteration in a mitochondrially translated subunit of the mitochondrial ATPase (subunit 6; apparent Mr 20 000; apparent pI 6.9 and 7.1). This alteration leads to the defective assembly of the proteolipid subunit into the enzyme complex. The mutant, which is able to grow only very slowly by oxidative metabolism at 28°C offers new possibilities for studying the assembly of the membrane sector (F0) into the mitochondrial ATPase complex and the role of subunit 6 in this process.  相似文献   

13.
Adenosine is a versatile signaling molecule recognized to physiologically influence gut motor functions. Both the duration and magnitude of adenosine signaling in enteric neuromuscular function depend on its availability, which is regulated by the ecto-enzymes ecto-5′-nucleotidase (CD73), alkaline phosphatase (AP), and ecto-adenosine deaminase (ADA) and by dipyridamole-sensitive equilibrative transporters (ENTs). Our purpose was to assess the involvement of CD73, APs, ecto-ADA in the formation of AMP-derived adenosine in primary cultures of ileal myofibroblasts (IMFs). IMFs were isolated from rat ileum longitudinal muscle segments by means of primary explant technique and identified by immunofluorescence staining for vimentin and α-smooth muscle actin. IMFs confluent monolayers were exposed to exogenous 5′-AMP in the presence or absence of CD73, APs, ecto-ADA, or ENTs inhibitors. The formation of adenosine and its metabolites in the IMFs medium was monitored by high-performance liquid chromatography. The distribution of CD73 and ADA in IMFs was detected by confocal immunocytochemistry and qRT-PCR. Exogenous 5′-AMP was rapidly cleared being almost undetectable after 60-min incubation, while adenosine levels significantly increased. Treatment of IMFs with CD73 inhibitors markedly reduced 5′-AMP clearance whereas ADA blockade or inhibition of both ADA and ENTs prevented adenosine catabolism. By contrast, inhibition of APs did not affect 5′-AMP metabolism. Immunofluorescence staining and qRT-PCR analysis confirmed the expression of CD73 and ADA in IMFs. Overall, our data show that in IMFs an extracellular AMP-adenosine pathway is functionally active and among the different enzymatic pathways regulating extracellular adenosine levels, CD73 and ecto-ADA represent the critical catabolic pathway.  相似文献   

14.
Microsomes from guinea-pig cerebral cortex contain a system capable of exchanging ADP with ATP at rates of about 20mumoles/mg. of protein/hr. The ADP-ATP-exchange reaction requires Mg(2+) for activity. The reaction is not stimulated by Na(+) or K(+) and is not inhibited by ouabain, in contrast with the Na(+)-plus-K(+)-stimulated adenosine triphosphatase. The pH optimum also differs from that of the adenosine triphosphatase. The ADP-ATP-exchange reaction is stimulated two- to three-fold by non-ionic, anionic and cationic detergents, even when these agents are inhibiting the adenosine-triphosphatase reaction. This reaction may represent a component of the Na(+)-plus-K(+)-stimulated adenosine-triphosphatase reaction but is more likely to be due to other enzyme systems present in microsomal subfractions.  相似文献   

15.
Template-primer dependent inactivation of human DNA polymerase and Klenow fragment of E. coli DNA polymerase I by adenosine 2,3-riboepoxide 5-triphosphate was used for quantitative analysis of the Kd values for oligonucleotide primers of different length. The Kd values are smaller by a factor of 2.5 than the Km values for the same primers determined in the reaction of DNA polymerization in the case of DNA polymerase . The Kd and Km values are nearly the same for Klenow fragment. Such approach to the determination of Km/Kd ratio can likely be used for detailed quantitative analysis of DNA polymerases.Abbreviations epATP adenosine 2,3-riboepoxide 5-triphosphate - KF Klenow fragment of E. coli DNA polymerase I - Pol I E. coli DNA polymerase I - Pol human placenta DNA polymerase   相似文献   

16.
1. A comparison was made of the binding of 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) and cyclic AMP in the rat prostate gland. Distinct binding mechanisms exist for these compounds, and cyclic AMP cannot serve as a competitor for the 5alpha-dihydrotestosterone-binding sites and vice versa. In contrast with the results obtained with 5alpha-dihydrotestosterone, very small amounts of cyclic AMP are retained in nuclear chromatin and the overall binding of this cyclic nucleotide is not markedly affected by castration. 2. Androgenic stimulation does not lead to major increases in the adenylate cyclase activities associated with any subcellular fraction of the prostate gland. Accordingly, changes in the concentration of cyclic AMP in the prostate gland after hormonal treatment are likely to be small, but these were not measured directly. 3. When administered to whole animals in vivo, small amounts of non-degraded cyclic AMP are found in the prostate gland but sufficient to promote an activation of certain carbohydrate-metabolizing enzymes in the cell supernatant fraction. The stimulatory effects of cyclic AMP were not evident with cytoplasmic enzymes engaged in polyamine synthesis or nuclear RNA polymerases. These latter enzymes were stimulated solely by the administration of testosterone. 4. By making use of antiandrogens, a distinction can be drawn between the biochemical responses attributable to the binding of 5alpha-dihydrotestosterone but not of cyclic AMP. Evidence is presented to suggest that the stimulation of RNA polymerase, ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase is a consequence of the selective binding of 5alpha-dihydrotestosterone. Only the stimulation of glucose 6-phosphate dehydrogenase can be attributed to cyclic AMP or other metabolites of testosterone. 5. Overall, this study indicates that the formation of cyclic AMP is not a major feature of the androgenic response and affects only a restricted number of biochemical processes. Certainly, cyclic AMP cannot be considered as interchangeable with testosterone and its metabolites in the control of the function of the prostate gland. This difference is additionally emphasized by the failure of cyclic AMP to restore the morphology of the prostate gland in castrated animals; morphological restoration only follows the administration of androgens.  相似文献   

17.
We have extracted and purified a nucleotide from cells of Chlorella, pyrenoidose Chick which shares the following properties with adenosine 5′ phosphoramidate; electrophoretic mobility in sodium bicarbonate and in sodium borate buffer (pH 8.0); retention time on high performance liquid chromatography; ultraviolet absorption spectrum at pH 1–2 and 7–9; a yield of one mole each of adenine, ribose, total phosphate and ammonia released at low pH; and formation of adenosine 5′ monophosphate on acidification or treatment with 3′:5′-cyclic-nucleotide phosphodiesterase (EC3.1.4.17). Although formation of APA from its precursor adenosine 5′ phosphosulfate during extraction and purification is not expected this appears to be excluded by the use of low temperature throughout purification and the finding that [14C] APS added before extraction does not significantly label the adenosine 5′ phosphoramidate isolated. Thus adenosine 5′ phosphoramidate appears to be a normal constituent of Chlorella cells like the enzyme which forms it: adenylyl sulfate: ammonia adenylyl transferase.  相似文献   

18.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

19.
Summary The effects of 2deoxycoformycin, a specific inhibitor of adenosine deaminase, on the repair and fixation of potentially lethal damage (PLD) sensitive to treatment with-araA, an adenosine analogue acting via inhibition of DNA polymerases and, have been studied. Given after irradiation deoxycoformycin alone had little effect on cell survival. More damage was nevertheless fixed by a given concentration of-araA in the presence of deoxycoformycin to a degree that 35 µM-araA given simultaneously with 1 µg/ml deoxycoformycin produced the same effect (survival decrease to 20% of the controls) as 90 µM-araA given alone. Maximum potentiation of the-araA effect was observed at 1 µg/ml deoxycoformycin with a slight decrease at higher concentrations.Combined treatment with-araA and deoxycoformycin reduced or eliminated the shoulder from the survival curve without affecting the slope, an effect similar to that observed after treatment of cells with-araA alone. The results indicate the importance of adenosine deaminase in the inactivation of nucleoside analogues and are discussed vis-a-vis the possible practical application of this inhibitor in both experimental and therapeutic applications.  相似文献   

20.
Purinergic Signalling - After more than two decades of preclinical and clinical studies, on August 27, 2019, the US Food and Drug Administration (FDA) approved the adenosine A2A receptor antagonist...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号