首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The proximal colon of the new-born pig maintains a stable short-circuit current which is partly dependent upon the presence of methionine. This interaction between methionine and short circuit current shows Michaelis- Menten knetics with a Km of 0.24 mM and a V of 27 μA·cm?2. The net flux of methionine to the serosal surface of proximal colons also shows a hyperbolic relation to the external concentration of methionine (Km 0.38 mM; V 10.4 nmol·cm?2·min?1). The proximal colon concentrates methionine within its epithelium giving a mucosal to medium ratio of 11.2 ± 1.9 (90 min incubation in 1 mM methionine).The ability of the colon to transport methionine across and concentrate methionine within its mucosa is maintained for at least 24 h after birth. Colonic transport of amino acids could be physiologically important in the pig, where the immediate post-natal transfer of immune globulins has been shown to cause a temporary inhibition of normal intestinal function.  相似文献   

2.
3.
The apparent Arrhenius energy of activation (Ea) of the water osmotic permeability (Posc) of the basolateral plasma cell membrane of isolated rabbit proximal straight tubules has been measured under control conditions and after addition of 2.5 mM of the sulfhydryl reagent, para-chloromercuribenzenesulfonic acid (pCMBS), of mersalyl and of dithiothreitol. Ea (kcal/mol) was 3.2 ± 1.4 (controls) and 9.2 ± 2.2 (pCMBS), while Posc decreased with pCMBS to 0.26 ± 0.17 of its control value. Mersalyl also decreased Posc both in vitro and in vivo (using therapeutical doses). These actions of pCMBS and mersalyl were quickly reverted with 5 mM dithiothreitol and prevented by 0.1 M thiourea. Ea for free viscous flow is 4.2 and greater than 10 for non-pore-containing lipid membranes. By analogy with these membranes and with red blood cells, where similar effects of pCMBS on Pos are observed, it is concluded that cell membranes of the proximal tubule are pierced by aqueous pores which are reversibly shut by pCMBS. Part of the action of mercurial diuretics can be explained by their action on Posc.  相似文献   

4.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

5.
Cell membrane potential, Vm, was monitored in rabbit hypertrophic cartilage metatarsals, amphibian proximal tubule and muscle cells during application of 1,25-dihydroxy vitamin D-3, 25-hydroxy vitamin D-3 or cholesterol (10?10M). 1,25-Dihydroxy vitamin D-3 elicited quick variations of Vm (in less than 1 min) in proximal tubular cells (whether injected in the lumen or in peritubular capillaries) and in cartilage. The precursor 25-hydroxy vitamin D-3 and cholesterol produced a small shift of Vm in proximal tubule only when applied from the luminal side, but this change was significantly smaller than that observed with 1,25-dihydroxy vitamin D-3. Muscle cells were unresponsive to both metabolites and cholesterol. It is concluded that rapid effects of 1,25-dihydroxy vitamin D-3 on Vm, in target cells, are specific, most likely due to permeability changes and not related to nuclear protein synthesis; they may contribute to early modulation of cell function.  相似文献   

6.
(5-Isoleucine)-angiotensin II applied to black lipid membranes produced current fluctuations varying between Δ>G = 5 · 10?11 Ω? and 3.5 · 10?10 Ω?1. These fluctuations depend on the voltage and the hydrostatic pressure. The membrane resistance is lowered by Δ>R = 6.1 · 107 Ω · cm2. With (5-isoleucine, 8-leucine)-angiotensin II the jumps are of a single amplitude (Δ>G = 2 · 10?10 Ω?1). In both cases water and ions are transported across the membrane.  相似文献   

7.
A method for calculating the rate constant (KA1A2) for the oxidation of the primary electron acceptor (A1) by the secondary one (A2) in the photosynthetic electron transport chain of purple bacteria is proposed.The method is based on the analysis of the dark recovery kinetics of reaction centre bacteriochlorophyll (P) following its oxidation by a short single laser pulse at a high oxidation-reduction potential of the medium. It is shown that in Ectothiorhodospira shaposhnikovii there is little difference in the value of KA1A2 obtained by this method from that measured by the method of Parson ((1969) Biochim. Biophys. Acta 189, 384–396), namely: (4.5±1.4) · 103s?1 and (6.9±1.2) · 103 s?1, respectively.The proposed method has also been used for the estimation of the KA1A2 value in chromatophores of Rhodospirillum rubrum deprived of constitutive electron donors which are capable of reducing P+ at a rate exceeding this for the transfer of electron from A1 to A2. The method of Parson cannot be used in this case. The value of KA1A2 has been found to be (2.7±0.8) · 103 s?1.The activation energies for the A1 to A2 electron transfer have also been determined. They are 12.4 kcal/mol and 9.9 kcal/mol for E. shaposhnikovii and R. rubrum, respectively.  相似文献   

8.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10?8 M and was half-maximal at 7.9±3.4·10?7M. The increase at 1·10?5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10?9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10?5 M dopamine was 2.3±0.9·10?6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10?7M and 4.7±1.6·10?7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10?6Mcis-flupenthixol, 2.7±0.4·10?5Mtrans-flupenthixol, >1·10?5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

9.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

10.
Robert F. Anderson 《BBA》1983,723(1):78-82
The bimolecular decay rates (2k) of the flavosemiquinones (FH·F?) of riboflavin, FMN and FAD have been determined using pulse radiolysis. The rates (defined as d[FH·F?]dt = ?2k[FH·F?]2) for the neutral flavosemiquinones at zero ionic strength and pH 5.9 are (in units of mol?1·dm3·s?1): (1.2 ± 0.1)·109, (5.0 ± 0.2)·108 and (1.4 ± 0.1)·108; and for the anionic flavosemiquinones at pH 11.2 (5.4 ± 0.9)·108, (4.5 ± 0.3)·107 and (8.5 ± 1.3)·106, respectively. The kinetic salt effect has been used to formulate rate equations for each flavin to adjust for ionic strength effects.  相似文献   

11.
The temperature dependence of the binding of PhNapNH2 (N-phenyl-1-naphthylamine) to vesicles of egg phosphatidylcholine has been determined. The Arrhenius plot of the association constant exhibits a discontinuity at 20.9 °C, some 30 °C above the broad phase transition region of the phospholipid. In the temperature range above 20 °C, ΔH0 = ?6100 cal·mol?1 and ΔS0 = 9.7 e. u.; in the temperature range below 20 °C, ΔH0 = 0 cal · mol?1 and ΔS0 = 30.4 e. u. These values are consistent with the view that there are well ordered lipid-lipid bonds below 20 °C which are significantly less important above this temperature. The order in the temperature range of 5 to 20 °C, though significantly greater than that above 20 °C, is still significantly less than that in the crystalline state.  相似文献   

12.
13.
Acid dissociation constants of aqueous cyclohexaamylose (6-Cy) and cycloheptaamylose (7-Cy) have been determined at 10–47 and 25–55°C, respectively, by pH potentiometry. Standard enthalpies and entropies of dissociation derived from the temperature dependences of these pKa's are ΔH0 = 8.4 ± 0.3 kcal mol?1, ΔS0 = ?28. ± 1 cal mol?10K?1 for 6-Cy and ΔH0 = 10.0 ± 0.1 kcal mol?1, ΔS0 = ?22.4 ±0.3 cal mol?10K?1 for 7-Cy. Intrinsic 13C nmr resonance displacements of anionic 6- and 7-Cy were measured at 30°C in 5% D2O (vv). These results indicate that the dissociation of 6- and 7-Cy involves both C2 and C3 20-hydroxyl groups. The thermodynamic and nmr parameters are discussed in terms of interglucosyl hydrogen bonding.  相似文献   

14.
Lanthanum (0.25 mM) does not penetrate into fresh or Mg2+-depleted cells, whereas it does into ATP-depleted or ATP + 2,3-diphosphoglycerate-depleted cells, into cells containing more than 3 mM calcium, or cells stored for more than 4 weeks in acid/citrate/dextrose solution. In fresh cells loaded with calcium, extracellular lanthanum blocks the active Ca2+-efflux completely and inhibits (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity to about 50%. In Mg2+-depleted cells Ca2+-Ca2+ exchange is inhibited by lanthanum. Ca2+-leak is unaffected by lanthanum up to 0.25 mM concentration; higher lanthanum concentrations reduce leak rate. In NaCl medium Ca2+-leak ± S.D. amounts to 0.28 ± 0.08 μmol/l of cells per min, whereas in KCl medium to 0.15 ± 0.04 μmol/l of cells per min at 2.5 mM [Ca2+]e and 0.25 mM [La3+]e pH 7.1.Lanthanum inhibits Ca2+-dependent rapid K+ transport in ATP-depleted and propranolol-treated red cells, i.e. whenever intracellular calcium is below a critical level. The inhibition of the rapid K+ transport can be attributed to protein-lanthanum interactions on the cell surface, since lanthanum is effectively detached from the membrane lipids by propranolol.Lanthanum at 0.2–0.25 mM concentration has no direct effect on the morphology of red cells. The shape regeneration of Ca2+-loaded cells, however, is blocked by lanthanum owing to Ca2+-pump inhibition. Using lanthanum the transition in cell shape can be quantitatively correlated to intracellular Ca2+ concentrations.  相似文献   

15.
The effects of d-glucose addition to a glucose-free luminal perfusate were investigated in the proximal tubule of Necturus kidney, by electrophysiological techniques. The main findings are: (1) In the presence of sodium, d-glucose produces 10.5 mV ± 1.1 (S.E.) depolarization. (2) Phlorizin reduces the magnitude of this response to 2.1 ± 0.1 mV. (3) The glucose-evoked depolarization, ΔVG, does not alter the intracellular K+ activity nor is it affected by peritubular addition of ouabain. (4) Isosmotic reduction of Na+ concentration in luminal perfusate from 95 to 2 mmol/l (choline or Li+ substituting for Na+) does not change the magnitude of ΔVG; complete removal of sodium from the lumen lowers the value of ΔVG (3.2 ± 0.2 mV) but the response is not abolished. This observation suggests that the d-glucose carrier of renal tubules in Necturus is poorly specific with regard to the cotransported cation species.  相似文献   

16.
17.
In order to test the question if a pool of lipophilic ions may exist in black lipid membranes which cannot be detected by electrical relaxation measurements we have performed simultaneously measurements of the optical absorption of a lipophilic ion. The absorbance of membrane-bound dipicrylamine at 410 nm was measured with a sensitive spectrophotometer which can detect absorbance changes ? 4 · 10?5. A minimal concentration of about 6 · 1011 dipicrylamine ions per cm2 of the membrane could be detected with this instrument. The dipicrylamine concentration in the membrane obtained with the optical method Ntopt is compared with the concentrations Ntel obtained from simultaneous electrical relaxation measurements. Ntopt and Ntel agreed at low dipicrylamine concentrations (10?8–10?7 M in the aqueous phase) and showed saturation at higher concentrations (up to 5 · 10?6 M). In the saturation range Ntopt was maximally four times higher than Ntel. The significance of this difference is discussed together with general aspects of the saturation phenomenon.  相似文献   

18.
The uptake of radiolabeled carnitine and butyrobetaine has been studied in human heart cells (CCL 27). The uptake of carnitine is 3–10-fold higher in heart cells than in fibroblasts (pmol · μg DNA?1). The uptake of carnitine increases with temperature coefficient KT of 1.6 in the interval 10–20° C and with a negligible uptake at 4 and 10° C. The uptake of carnitine follows Michaelis-Menten kinetics with a KM of 4.8 ± 2.2 μM and V = 8.7 ± 3.2 pmol · μg DNA?1 · h?1. Carnitine uptake is suppressed 90% by NaF (24 mM). Butyrobetaine is taken up into heart cells to the same extent as carnitine with a KM of 5.7–17.3 μM and V = 8.7–9.3 pmol · μg DNA?1 · h?1. Butyrobetaine inhibits competitively the uptake of carnitine and carnitine inhibits the uptake of butyrobetaine to the same extent. No conversion of radiolabeled butyrobetaine to carnitine, or carnitine to methyl choline was observed intra- or extracellulary during incubation. These data are compatible with a selective transport mechanism for carnitine which is also responsible for the uptake of butyrobetaine.  相似文献   

19.
(1) A membrane fraction enriched in (Na+ + K+)-ATPase (EC 3.6.1.3) was obtained from optic ganglia of the squid (Loligo pealei) by density gradient fractionation of membranes followed by treatment with either SDS or Brij-58. The resulting membrane had an (Na+ + K+)-ATPase specific activity of approx. 2 units/mg and was >95% ouabain-sensitive. (2) The (Na+ + K+)-ATPase had a Km for ATP of 0.42 ± 0.04 mM and a pH optimum of 7.0. It was inhibited by ouabain with a Ki of 0.32 ± 0.04 μM. (3) Optimum monovalent cation concentrations were: 240 mM NaCl, 60 mM KCl, tested with NaCl + KCl = 300 mM. (4) The Mg2+ dependence of hydrolysis varied with the absolute ATP concentration. At 3 mM ATP, theKm for Mg2+ was 0.86 ± 0.10 mM, and at 6 mM ATP, the Km was 1.86 ± 0.44 mM. High levels of Mg2+ caused inhibition of hydrolysis. (5) The interactions of Na+ and K+ were examined over a range of conditions. K+ levels caused modulations in the Na+ dependence in the range of 1–150 mM. (6) The (Na+ + K+)-ATPase prepared from squid optic ganglion displays properties similar to those of the sodium pump in injected nerves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号