首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C-labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C]ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891–2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

2.
Binding of ADP to beef-heart mitochondrial ATPase (F1)   总被引:1,自引:0,他引:1  
1. ADP binding to beef-heart mitochondrial ATPase (F1), in the absence of Mg2+, has been determined by separating the free ligand by ultrafiltration and determining it in the filtrate by a specially modified isotachophoretic procedure. 2. Since during the binding experiments the 'tightly' bound ADP (but not the ATP) dissociates, it is necessary to take this into account in calculating the binding parameters. 3. The binding data show that only one tight binding site (Kd about 0.5 microM) for ADP is present. 4. It is not possible to calculate from the binding data alone the number of or the dissociation constants for the weak binding sites. It can be concluded, however, that the latter is not less than about 50 microM.  相似文献   

3.
1. The naturally occurring mitochondrial ATPase inhibitor inhibits the mitochondrial ATPase (F1) non-competitively.2. The interaction between inhibitor and inhibitor-depleted F1 or submitochondrial particles is diminished when the ratio of ATP/ADP is low or when energy is generated by substrate oxidation.3. The dissociation of the inhibitor from coupled Mg-ATP particles is promoted when substrates are being oxidized. This results in the appearance of a large uncoupler-stimulated ATPase activity. Activation of the uncoupler-stimulated ATPase activity is also achieved by incubation of the particles with ADP.4. The ATPase activity of Mg-ATP particles is determined by the turnover capacity of F1. When endogenous inhibitor is removed, energy dissipation becomes the rate-limiting step. This energy dissipation can be activated by an uncoupler.5. Evidence is presented for the existence of a non-inhibited intermediate F1-inhibitor complex.  相似文献   

4.
R.A. Yeates 《BBA》1974,333(2):173-179
The antibiotic aurovertin binds to beef-heart mitochondrial ATPase, coupling Factor F1, with biphasic fluorescence enhancement. Specific binding effects, polarity and viscosity changes may all contribute to the enhancement. Evidence is presented that it stems from aurovertin binding followed by a slow conformational change in F1. This occurs more rapidly in dissociated F1. The effect of substrates of the enzyme on the fluorescence enhancement is examined. Evidence is presented that in the absence of added magnesium, F1 can hydrolyse low concentrations of added ATP.  相似文献   

5.
R.J. Van de Stadt  K. Van Dam 《BBA》1974,347(2):240-252
1. The reversible equilibrium between the mitochondrial ATPase (F1) and its naturally occurring inhibitor in Mg-ATP submitochondrial particles has been studied under different conditions.2. High ionic strength favours dissociation of the ATPase inhibitor as tested by ATPase and ATP-driven transhydrogenase activities.3. Dissociation of the ATPase inhibitor results in an increased maximal velocity of the ATPase activity measured in the presence of uncoupler and an increased affinity for adenine nucleotides, in particular for ATP.4. Association of the ATPase inhibitor with inhibitor-depleted Mg-ATP particles causes a slowing of the initial rate of succinate oxidation.5. The antibiotic aurovertin stimulates the ATPase activity of Mg-ATP particles preinculbated in the presence of a supply of oxidative energy. Bound aurovertin impedes the association of inhibitor-deficient particles with ATPase inhibitor.6. The fluorescence of aurovertin bound to inhibitor-containing particles is much less than that of aurovertin bound to inhibitor-depleted particles.7. The oligomycin-sensitivity-conferring protein, added either alone or in the presence or absence of membranous components of the ATPase complex, has little or no effect on the fluorescence of the F1-aurovertin complex.8. It is suggested that the ATPase inhibitor brings F1 in a conformation denoted 1F1 that binds aurovertin with a low quantum yield, a decreased affinity and an increased binding capacity.  相似文献   

6.
7.
Bovine heart submitochondrial particles depleted of F1 by treatment with urea (‘F1-depleted particles’) were incubated with soluble F1-ATPase. The binding of F1 to the particles and the concomitant conferral of oligomycin sensitivity on the ATPase activity required the presence of cations in the incubation medium. NH+4, K+, Rb+, Cs+, Na+ and Li+ promoted reconstitution maximally at 40–74 mM, guanidinium+ and Tris+ at 20–30 mM, and Ca2+ and Mg2+ at 3–5 mM. The particles exhibited a negative ζ-potential, as determined by microelectrophoresis, and this was neutralized by mono- and divalent cations in the same concentration range as that needed to promote F1 binding and reconstitution of oligomycin-sensitive ATPase. It is concluded that the cations act by neutralizing negative charges on the membrane surface, mainly negatively charged phospholipids. These results are discussed in relation to earlier findings reported in the literature with F1-depleted thylakoid membranes and with submitochondrial particles depleted of both F1 and the coupling proteins F6 and oligomycin sensitivity-conferring protein.  相似文献   

8.
Dennis R. Lang  Efraim Racker 《BBA》1974,333(2):180-186
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) shares certain properties with the mitochondrial ATPase inhibitor protein. At low concentrations it inhibits both soluble and particulate mitochondrial ATPase and has no effect on oxidative phosphorylation in submitochondrial particles. Unlike the mitochondrial inhibitor protein quercetin inhibits the ATP-dependent reduction of NAD+ by succinate in fully reconstituted submitochondrial particles. A comparison of various flavones indicates that the hydroxyl groups at the 3′ and perhaps 3 position are important for the inhibition of ATPase activity.  相似文献   

9.
D. Recktenwald  B. Hess 《BBA》1980,592(3):377-384
Methods are described to classify nucleotide binding sites of the mitochondrial coupling factor F1 from yeast on the basis of their affinities and stability properties. High affinity sites or states for ATP and related adenine analogs and low affinity sites or states which bind a broad range of different nucleotide triphosphates are found. The results are discussed in terms of a two site, two cycle scheme, where binding of nucleotide at one site facilitates the release of nucleotide at a second site.  相似文献   

10.
(1) The natural ATPase inhibitor (IF1) from beef heart mitochondria has a tendency to form aggregates in aqueous solutions. The extent of aggregation and the structure of the aggregates were assessed by gel filtration and small-angle neutron scattering. IF1 polymerization was found to depend on the salt concentrations, pH of the medium and concentration of IF1. The higher the salt concentration, the lower the aggregation state. Aggregation of IF1 was decreased at slightly acidic pH. It increased with the concentration of IF1 as expected from the law of mass action. (2) Neutron scattering showed the aggregation of IF1 in 2 M ammonium sulfate solutions. The predominant species is the dimer which has a somewhat elongated shape. (3) The Sephadex G-50 chromatography that is supposed to deprive beef heart submitochondrial particles of loosely bound IF1 (Racker, E. and Horstman, L.L. (1967) J. Biol. Chem. 242, 2547–2551) was shown to have a limited effectiveness as a trap for IF1. The reason was that IF1 released from the particles formed high molecular weight aggregates that were not separated from the membrane vesicles by Sephadex G-50 chromatography. (4) The above observations provide the basis for a simple method of purification of beef heart IF1 which combines the recovery of the supernatant from submitochondrial particles with the last three steps of the IF1 preparation described by Horstman and Racker (J. Biol. Chem. (1970) 265, 1336–1344). The particles recovered in the sediment were deprived of IF1 and could therefore be used for preparation of F1-ATPase. The advantage of this method is that both IF1 and F1-ATPase can be prepared from the same batch of mitochondria.  相似文献   

11.
R.J. Wagenvoord  A. Kemp  E.C. Slater 《BBA》1980,593(2):204-211
1. When irradiated 8-azido-ATP becomes covalently bound (as the nitreno compound) to beef-heart mitochondrial ATPase (F1) as the triphosphate, either in the absence or presence of Mg2+, label covalently bound is not hydrolysed.

2. In the presence of Mg2+ the nitreno-ATP is bound to both the and β subunits, mainly (63%) to the subunits.

3. After successive photolabelling of F1 with 8-azido-ATP (no Mg2+) and 8-azido-ADP (with Mg2+) 4 mol label is bound to F1, 2 mol to the and 2 mol to the β subunits.

4. When the order of photolabelling is reversed, much less 8-nitreno-ATP is bound to F1 previously labelled with 8-nitreno-ADP. It is concluded that binding to the -subunits hinders binding to the β subunits.

5. F1 that has been photolabelled with up to 4 mol label still contains 2 mol firmly bound adenine nucleotides per mol F1.

6. It is concluded that at least 6 sites for adenine nucleotides are present in isolated F1.  相似文献   


12.
The ATPase complex of submitochondrial particles exhibits activity transitions that are controlled by the natural ATPase inhibitor (Gómez-Puyou, A., Tuena de Gómez-Puyou, M. and Ernster, L. (1979) Biochim. Biophys. Acta 547, 252–257). The ATPase of intact heart mitochondria also shows reversible activity transitions; the activation reaction is induced by the establishment of electrochemical gradients, whilst the inactivation reaction is driven by collapse of the gradient. In addition it has been observed that the influx of Ca2+ into the mitochondria induces a rapid inactivation of the ATPase; this could be due to the transient collapse of the membrane potential in addition to a favorable effect of Ca2+-ATP on the association of the ATPase inhibitor peptide to F1-ATPase. This action of Ca2+ may explain why mitochondria utilize respiratory energy for the transport of Ca2+ in preference to phosphorylation. It is concluded that the mitochondrial ATPase inhibitor protein may exert a fundamental regulatory function in the utilization of electrochemical gradients.  相似文献   

13.
14.
Reduction of ATP hydrolysis activity of vacuolar-type ATPase/synthase (V0V1) as a result of ADP inhibition occurs as part of the normal mechanism of V0V1 of Thermus thermophilus but not V0V1 of Enterococcus hirae or eukaryotes. To investigate the molecular basis for this difference, domain-swapped chimeric V1 consisting of both T. thermophilus and E. hirae enzymes were generated, and their function was analyzed. The data showed that the interaction between the nucleotide binding and C-terminal domains of the catalytic A subunit from E. hirae V1 is central to increasing binding affinity of the chimeric V1 for phosphate, resulting in reduction of the ADP inhibition. These findings together with a comparison of the crystal structures of T. thermophilus V1 with E. hirae V1 strongly suggest that the A subunit adopts a conformation in T. thermophilus V1 different from that in E. hirae V1. This key difference results in ADP inhibition of T. thermophilus V1 by abolishing the binding affinity for phosphate during ATP hydrolysis.  相似文献   

15.
16.
17.
The hydrolytic and phosphorylation activities of the ATPase complex of bovine heart mitochondria are regulated by the ATPase inhibitor of Pullman and Monroy [1]. The inhibiting action of the peptide on ATPase activity can be overcome by a proton-motive force. Submitochondrial particles that contain the inhibitor, either intrinsically or externally added, show a lag that precedes phosphorylation. Particles devoid of the inhibitor, or particles that are in an ‘active’ state fail to present the lag. Accordingly, the data indicate that, prior to the onset of phosphorylation, the ATPase complex undergoes a transition to an active state through a process that involves the inhibitor. The transition depends on the concentration of ATP, 50 μM ATP giving 50% inhibition of the proton-motive force-induced transition.  相似文献   

18.
Highly purified peroxisomal fractions from rat liver contain ATPase activity (18.8 ± 0.1 nmol/min per mg, n = 6). This activity is about 2% of that found in purified mitochondrial fractions. Measurement of marker enzyme activities and immunoblotting of the peroxisomal fraction with an antiserum raised against the β-subunit of mitochondrial ATPase indicates that the ATPase activity in the peroxisomal fractions can not be ascribed to contamination with mitochondria or other subcellular organelles. From the sensitivity of the ATPase present in the peroxisomal fraction towards a variety of ATPase inhibitors, we conclude that it displays both V-type and F-type features and is distinguishable from both the mitochondrial F1F0-ATPase and the lysosomal V-type ATPase.  相似文献   

19.
A method is described for the purification of rat liver F1-ATPase by a modification of the chloroform extraction procedure originally described by Beechey et al. (Biochem. J. (1975) 148, 533). Purified liver membrane vesicles are extracted with chloroform in the presence of ATP and EDTA. The procedure yields pure F1 in only 2-3 h without the necessity of ion-exchange chromatography. The enzyme exhibits the alpha, beta, gamma, delta, and epsilon bands characteristic of F1-ATPase. It has a high ATPase specific activity, and is reconstitutively active, catalyzing high rates of ATP synthesis. Significantly, it can be readily crystallized. If desired, the enzyme can be passed over a gel filtration column to place it in a stabilizing phosphate-EDTA buffer, lyophilized and stored indefinitely at -20 degrees C.  相似文献   

20.
M.J. Tervoort  B.F. Van Gelder 《BBA》1983,722(1):137-143
The optical spectrum of reduced bovine cytochrome c1 at 77 K shows a fine splitting of the β-band, which is indicative of the native conformation of the protein. At room temperature, this conformation is reflected in an absorbance band at 530 nm. The exposure of the heme of ferrocytochrome c1, investigated by means of solvent-perturbation spectroscopy, appears to be extremely sensitive to temperature and SH reagents bound to the oxidized protein. Addition of combinations of potential ligands to the isolated tryptic heme peptide of cytochrome c1 reveals that only a mixture of methionine and cysteine (or their equivalents) generates a β-band at 77 K which is identical in shape to that of native cytochrome c1. In the EPR spectrum of a complex of ferrocytochrome c1 and nitric oxide at pH 10.5, no hyperfine splitting derived from a second ligated nitrogen atom could be detected. The results indicate that methionine and cysteine are the axial ligands of heme in cytochrome c1. The EPR spectrum of isolated ferricytochrome c1 is that of a low-spin heme iron compound with a gz value of 3.36 and a gy value of 2.04.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号