首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase transition temperature (Tt) of dipalmitoyl phosphatidic acid multilamellar liposomes is depressed 10°C by the inhalation anesthetic methoxyflurane at a concentration of 100 mmol/mol lipid. Application of 100 atm of helium pressure to pure phosphatidic acid liposomes increased Tt only 1.5°C. However, application of 100 atm helium pressure to dipalmitoyl phosphatidic acid lipsomes containing 100 mmol methoxyflurane/mol lipid almost completely antagonized the effect of the anesthetic. A nonlinear pressure effect is observed. In a previous study, a concentration of 60 mmol methoxyflurane/mol dipalmitoyl phosphatidylcholine depressed Tt only 1.5°C, exhibiting a linear pressure effect. The completely different behavior in the charged membrane is best explained by extrusion of the anesthetic from the lipid phase.  相似文献   

2.
The lateral diffusion coefficients (D) of the molecular fluorescence probe 3,3′-dioctadecylindocarbocyanine iodide (DII) in the membrane of discoid erythrocyte ghosts has been measured with the photobleaching technique between 7°C and 40°C. A fluorescence microscope which allows bleaching experiments within small local fields (approx. 1 μm2) at high magnification (X1600) has been used for these measurements. The diffusion coefficient increases from D = 9 · 10?10cm2/s to D = 7.5 · 10?9cm2/s from 7 to 40°C. An increase in membrane fluidity between 12°C and 17°C indicates a conformational change of the lipid bilayer moiety in this temperature region. The diffusion coefficient measured in the regions between the spicules of echinocytes is appreciably smaller than in the untransformed discoid ghosts. In the myelin tubes originating from cells, the lateral diffusion is somewhat larger (about a factor of 2) than in the non-transformed ghosts. With the fluorescence probe technique the rate of growth of myelin tubes of 0.3 μm diameter has been estimated.  相似文献   

3.
4.
Infinite cis uptake of cyclic AMP into red blood cell ghosts has been measured. The Kicoi is calculated from two different integrated rate equations that are applicable when the substrate concentration is unsufficient to cause volume changes. Values of 0.69 mM and 0.66 mM are obtained for the infinite cisKm at 30°C using these procedures. These values are only slightly higher than that predicted from zero trans net flux experiments.Lowering the temperature reduces Kicoi from 0.69 mM at 30°C to 0.478 mM at 20°C, 0.108 mM at 10°C and 0.072 mM at 4°C (Q10 = 2.4). The Q10 for activation of influx permeability of 10?5 M cyclic AMP is 1.55.  相似文献   

5.
The initial membrane reaction in the biosynthesis of peptidoglycan is catalyzed by phospho-N-acetylmuramyl (MurNAc)-pentapeptide translocase (UDP-MurNAc-Ala-γ dGlu-Lys-dAla-dAla undecaprenyl phosphate phospho-MurN Acpentapeptide transferase). In addition to the transfer reaction, the enzyme catalyzes the exchange of [3H]uridine monophosphate with the uridine monophosphate moiety of UDP-MurN Ac-pentapeptide. Two distinct discontinuities are observed in the slopes of the Arrhenius plots of the exchange and transfer activities at 22 and 30°C for the enzyme from Staphylococcus aureus Copenhagen. Anisotropy measurements of perylene fluorescence and electron spin resonance measurements of N-oxyl-4′,4′-dimethyloxazolidine derivatives of 12-and 16-ketostearic acid intercalated into membranes from this organism define the lower (T1 = 16–22°C) and upper (Th = 30°C) boundaries of a phase transition. These values correlate with the discontinuities observed for the activity measurements. Thus, it is proposed that the physical state of the lipid micro-environment of phospho-MurN Ac-pentapeptide translocase has a significant effect on the catalytic activity of this enzyme.  相似文献   

6.
The mode of interaction of aqueous dispersions of phospholipid vesicles is investigated. The vesicles (average diameter 950 Å) are prepared from total lipid extracts of Escherichia coli composed of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. One type of vesicle contains trans-Δ9-octadecenoate, the other type trans-Δ9-hexadecenoate as predominant acyl chain component. The vesicles show order?disorder transitions at transition temperatures, Tt = 42° C and Tt = 29° C, respectively. A mixture of these vesicles is incubated at 45° C and lipid transfer is studied as a function of time using the phase transition as an indicator. The system reveals the following properties: Lipids are transferred between the two vesicle types giving rise to a vesicle population where both lipid components are homogeneously mixed. Lipid transfer is asymmetric, i.e. trans-Δ9-hexadecenoate-containing lipid molecules appear more rapidly in the trans-Δ9-octadecenoate-containing vesicles than vice versa. At a given molar ratio of the two types of vesicles the rate of lipid transfer is independent of the total vesicle concentration. It is concluded that lipid exchange through the water phase by way of single molecules or micelles is the mode of communication of these negatively charged lipid vesicles.  相似文献   

7.
We have studied the solid to liquid-crystalline phase transition of sonicated vesicles of dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylcholine. The transition was studied by both fluorescence polarization of perylene embedded in the vesicles, and by the efflux rate of trapped 22Na+.Fluorescence polarization generally decreases with temperature, showing an inflection in the region 32–42°C with a mid-point of approximately 37.5 °C. On the other hand, the perylene fluorescence intensity increases abruptly in this region. To explain this result, we have proposed that, for T < Tc where Tc is the transition temperature, perylene is excluded from the hydrocarbon interior of the membranes, whereas, T < Tc this probe may be accommodated in the membrane interior to a large extent.The self-diffusion rates of 22Na+ through dipalmitoylphosphatidylglycerol vesicles exhibit a complex dependence on temperature. There is an initial large increase in diffusion rates (approximately 100-fold) between 30 and 38 °C, followed by a decrease (approximately 4-fold) between 38 and 48 °C. A monotonic increase is then observed at temperatures higher than 48 °C. The local maximum of 22Na+ self-diffusion rates at approximately 38 °C coincides with the mid-point of phase transition as detected by changes in fluorescence polarization of perylene with the same vesicles. Vesicles composed of dipalmitoylphosphatidylcholine show the same general behavior in terms of 22Na+ self-diffusion rates at different temperatures, except that the local maximum occurs at approximately 42 °C.The temperature dependence of the permeability and the appearance of a local maximum at the phase transition region could be explained in terms of a domain structure within the plane of the membranes. This explanation is based on the possibility that boundary regions between liquid and solid domains would exhibit relatively high permeability to 22Na+.Mixed vesicles composed of equimolar amounts of dipalmitoyl phospholipids and cholesterol show no abrupt changes in the temperature dependence of either perylene fluorescence polarization or 22Na+ diffusion rate measurements. This is taken to indicate the absence of agross phase transition in the presence of cholesterol.  相似文献   

8.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

9.
The temperature-dependent relationship between K+ active influx, Mg2+-ATPase activity, transmembrane potential (ΔΨ) and the membrane lipid composition has been investigated in mycoplasma PG3. Native organisms were grown in a medium containing 10 μg/ml cholesterol and either oleic plus palmitic (chol (+), O + P) or elaidic (chol (+), E) acids. Adapted cells were grown in a medium free of exogenous cholesterol and supplemented with elaidic acid (chol (?), E).Arrhenius plots of 42K+ active influx gave a linear relationship for (chol (+), O + P) cells (EA = ?9 kcal). On the other hand, when oleic plus palmitic acids are replaced by elaidic acid, an upward discontinuity appears between 28 and 30°C, which is associated with a large increase in the apparent activation energy of the process (t > 30°C, EA = ?24 kcal; t < 30°C, EA = ?40 kcal).Finally, a biphasic response with a break at approx. 23°C (EA = ?7 kcal, t > 23°C; EA = ?44 kcal, t < 23°C) is observed for (chol (?), E) organisms. From the lack of correspondence between these effects on the K+ influx and the temperature dependence of both the Mg2+-ATPase activity and ΔΨ, it is suggested that changes in the membrane lipid composition affect the K+ transport at the level of the K+ carrier itself.Differential scanning calorimetry, steady-state fluorescence polarization of diphenylhexatriene and freeze-fracture electron microscopy experiments further suggest that the effect is largely due to modifications of the membrane microviscosity and that the K+ carrier is associated with the most fluid lipid species present in the membrane.  相似文献   

10.
Equilibrium and kinetics of thermal melting of yeast 5.8S ribosomal RNA in aqueous NaCl were investigated by differential thermal melting and temperature jump methods. Two peaks were observed in each of the melting curves at 1 mM-1 M Na+ and linearity between each melting temperature Tm and log[Na+] was found at [Na+> 10 mM. From the difference spectrum ratio, dA280dA260, the G-C content in the local structures was calculated to be 91 and 56%. The temperature jump to 70–85°C in aqueous 30 mM Na+ of the RNA solution induced first-order kinetics, from which the kinetically determined melting curve was calculated. The curve could be approximately described in a Gaussian form with a Tm which agrees well with the high Tm in the static melting curve at 30 mM Na+. The kinetic properties of the reaction indicated a double helix-coil transition. However, the temperature jump to 20–60°C did not induce monophasic kinetics. The kinetic amplitude of the slow component showed a Tm which corresponded to the low Tm in the static melting curve at 30 mM Na+. The slow relaxation had the characteristics of a double helix-to-coil transition. However, contributions from very fast processes including single strand unstacking, were most noticeable in the low temperature melting region of the static curve. The thermodynamic parameters of both transitions from double helix to coil were analysed in detail. Both activation energies for helix formation were negative, and the nucleation is thought to follow a process similar to that in oligonucleotides. Values of Tm and enthalpy change of both helix-coil transitions indicated the cloverleaf model as the most plausible one for some limited regions of yeast 5.8S RNA among the previously proposed models: burp gun, cloverleaf and Rubin's models.  相似文献   

11.
Hepatocytes prepared by collagenase perfusion from Antarctic nototheniid fish of genus Trematomus are active in uptake of [14C]leucine at 0, 5, and 10°C. The system is saturable with apparent Km about 1.0 mM. Isoleucine and phenylalanine were major competitors, valine was about one-half as effective, while alanine, glycine and histidine had no effect. Temperature dependency of rates in the 0–10°C range yielded Ea = 65 kJ/mol (Q10 = 2.7). The average first-order rate constant at 0°C was 0.1 min?1, one-third the value of 0.3 min?1 estimated for clearance of [14C]leucine by liver of these species in vivo. Affinity and specificity agreed well with in vivo data on liver clearance of leucine, both in Antarctic fish at 0°C and in temperate fish acclimated to 10°C and 20°C. The results indicate similar modifications of leucine transport associated with evolutionary cold adaptation and seasonal acclimation in fish.  相似文献   

12.
(1) The Michaelis-Menten parameters for hexose transfer in erythroctes, erythrocyte ghosts and inside-out vesicles at 20°C were determined using the light scattering method of Sen and Widdas ((1962) J. Physiol. 160, 392–403). (2) The external Km for infinite-cis exit of d-glucose in cells and ghosts is 3.6 ± 0.5 mM. (3) Dilution of cellular solute (up to × 90 dilution) by lysing and resealing cells in varying volumes of lysate is without effect on the Vm for net d-glucose exit. The Km for net exit, however, falls from 32.4 ± 3.7 mM in intact cells to 12.9 ± 2.3 mM in ghosts. This effect is reversible. (4) Infinite-cis net d-glucose uptake measurements in cells and ghosts reveal the presence of a low Km, high affinity internal site of 5.9 ± 0.8 mM. The Vm for net glucose entry increases from 23.2 ± 3.7 mmol/l per min in intact cells to 55.4 ± 6.3 mmol/l per min in ghosts. (5) The external Km for infinite-cisd-glucose exit in inside-out vesicles is 6.8 ± 2.7 mM. The kinetics of zero-transd-glucose exit from inside-out vesicles are changed markedly when cellular solute (obtained by lysis of intact cells) is applied to either surface of inside-out vesicles. When solute is present externally, the Km and Vmax for zero-trans exit are decreased by up to 10-fold. When solute is present at the interior of inside-out vesicles, Vmax for zero-trans exit is reduced; Km for exit is unaffected. In the nominal absence of cell solute, transfer is symmetric in inside-out vesicles. The orientation of transporter in the bilayer is unaffected by the vesiculation procedure. (6) External application of cellular solute to ghosts reduces Vmax for d-glucose exit but is without effect on the external Km for infinite-cis exit. (7) The inhibitory potency of cell lysate on hexose transfer is lost following dialysis indicating that the factors responsible for transfer modulation are low molecular weight species. (8) We consider the hexose transfer in human erythrocytes is intrinsically symmetric and that asymmetry of transfer is conferred by interaction of the system with low molecular weight cytosolic factors.  相似文献   

13.
The emission and polarization spectra of 1-phenyl-3-(2-naphthyl)-2-pyrazoline (PNP) in various environments were studied. Compared to the widely used orientational membrane probe 1,6-diphenylhexatriene (DPH), PNP is five times less photolabile and since its fluorescence emission maximum is at longer wavelengths max ≈ 445 nm), it is more suitable for use with intact erythrocytes. The limiting fluorescence anisotropy of PNP is 0.385. In erythrocyte ghosts, the steady-state emission anisotropy of PNP is a decreasing function of wavelength and its temperature dependence parallels that of DPH, dropping from 0.298 at 2°C to 0.185 at 38°C when averaged between 420 and 470 nm.  相似文献   

14.
Flufenamate, a non-steroidal anti-inflammatory drug, is a powerful inhibitor of anion transport in the human erythrocyte (I50 = 6·10?7M). The concentration dependence of the binding to ghosts reveals two saturable components. [14C]Flufenamate binds with high affinity (Kd1 = 1.2·10?7M) to 8.5·105 sites per cell (the same value as the number of band 3 protein per cell); it also binds, with lower affinity (Kd2 = 10?4M) to a second set of sites (4.6·107 per cell). Pretreatment of cells with 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), a specific inhibitor of anion transport, prevents [14C]flufenamate binding only to high affinity sites. These results suggest that high affinity sites are located on the band 3 protein involved in anion transport. Extracellular chymotrypsin and pronase at low concentration cleave the 95 kDa band 3 into 60 kDa and 35 kDa fragments without affecting either anion transport or [14C]flufenamate binding. Splitting by trypsin at the inner membrane surface of the 60 kDa chymotryptic fragment into 17 kDa transmembrane fragment and 40 kDa water-soluble fragment does not affect [14C]flufenamate binding. In contrast degradation at the outer membrane surface of the 35 kDa fragment by high concentration of pronase or papain decreases both anion transport capacity and number of high affinity binding sites for [14C]flufenamate. Thus it appears that 35 kDa peptide is necessary for both anion transport and binding of the inhibitors and that the binding site is located in the membrane-associated domain of the band 3 protein.  相似文献   

15.
Binding of the chromogenic ligand p-nitrophenyl α-d-mannopyranoside to concanavalin A was studied in a stopped-flow spectrometer. Formation of the protein-ligand complex could be represented as a simple one-step process. No kinetic evidence could be obtained for a ligand-induced change in the conformation of concanavalin A, although the existence of such a conformational change was not excluded. The entire change in absorbance produced on ligand binding occurred in the monophasic process monitored in the stopped-flow spectrometer. The value of the apparent second-order rate constant (ka) for complex formation (ka = 54,000 s?1m? at 25 °C, pH 5.0, Γ/2 0.5) was independent of the protein concentration when the protein was in the range of 233–831 μm in combining sites and in excess of the ligand. The apparent first-order rate constant (k?a) for dissociation of the complex was obtained from the rate constant for the decomposition of the complex upon the addition of excess methyl α-d-mannopyranoside (k?a = 6.2 s?1 at 25 °C, pH 5.0, Γ/2 0.5). The ratio ka?a (0.9 × 104m?1) was in reasonable agreement with value of 1.1 ± 0.1 × 104m?1 determined for the equilibrium constant for complex formation by ultraviolet difference spectrometry. Plots of ln(kaT) and ln(kaT) vs 1T were linear (T is temperature) and were used to evaluate activation parameters. The enthalpies of activation for formation and dissociation of the complex are 9.5 ± 0.3 and 16.8 ± 0.2 kcal/mol, respectively. The unitary entropies of activation for formation and dissociation of the complex are 2.8 ± 1.1 and 1.3 ± 0.7 entropy units, respectively. These entropy changes are much less than those usually associated with substantial changes in the conformation of proteins.  相似文献   

16.
17.
The phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine was studied under high pressures of helium (340 atm), nitrogen (340 atm), nitrous oxide (43 atm), cyclopropane (4.4 atm) and n-propane (8.2 atm), using a turbidimetric technique. Helium and nitrogen increased the transition temperature by 0.021 and 0.006°C/atm, respectively, compared with 0.024°C/atm for hydrostatic pressure. Nitrous oxide reduced the transition by 0.58°C/atm. The hydrocarbon gases spread the transition width and lowered the transition temperature with increasing effect at higher doses. Comparisons with other membrane probes are made and the concentration of gases in the bilayer which lower the transition temperature by 1°C are estimated, in mol%: He, 10.2; N2, 13.2; N2O, 9.04; n-C3H8, 6.3 and cyclopropane, 12.8.  相似文献   

18.
Perturbations induced by melittin on the thermotropism of dimyristoyl-, dipalmitoyl-, distearoylphosphatidylcholine and natural sphingomyelin are investigated and rationalized from data obtained by fluorescence polarization, differential scanning calorimetry and Raman spectroscopy. Depending on the technique and / or experimental conditions used, the observed effects differ at the same lipid to protein molar ratio, due to partial binding of melittin. The binding is more efficient for tetrameric than for monomeric melittin, but in both cases its affinity is weaker for phosphatidylcholine dispersions in the gel phase than for sonicated vesicles. For temperatures T ? Tm efficient binding occurs whatever the initial state of the lipids is. One can summarize the effects induced by melittin on the transition temperature as follows: (i) No upward shift is observed on synthetic phosphatidylcholines when lipid degradation is avoided. This is achieved by using highly purified melittin, phospholipase inhibitors, and / or non-hydrolysable lipids. (ii) Melittin monomer does not change Tm. (iii) When melittin tetramer is stabilized, it decreases Tm by 10–15 deg. C. The transition broadens, and is finally abolished for Ri ? 2. Very similar results are found for natural sphingomyelin. Fluorescence polarization indicates similar changes in order and dynamics of the acyl chains for all lipid studied. For T ? Tm, fluorescence and Raman show that melittin decreases the amount of CH2 groups in ‘trans’ conformation and the intermolecular order of the chains. According to fluorescence data, there is an increase of the rigid-body orientational order at T ? Tm, while from Raman the positional intermolecular order decreases without significant change in the CH2 groups ‘trans’/‘gauche’ ratio.  相似文献   

19.
(1) The polymorphic phase behaviour of aqueous dispersions of various synthetic phosphatidylethanolamines, both singly and in mixtures, has been investigated by 31P-NMR. (2) 14:014:0 PE remains in the lamellar phase up to 90°C. 18:1t18:1t PE exhibits a lamellar to hexagonal (HII) transition between 60°C and 63°C. For 18:1c18:1c PE, the lamellar to hexagonal (HII) transition occurs between 7 and 12°C, whereas for 18:2c18:2c PE, the hexagonal (HII) phase is the preferred structure above ?15°C. (3) Mixtures of 18:1c18:1c PE and 18:1t18:1t PE exhibit near-ideal miscibility behaviour. For mixtures of 18:1c18:1c PE and 14:014:0 PE there is evidence of fluid-solid immiscibility at temperatures below the gel-liquid crystalline transition temperature of the 14:014:0 PE component. Mixtures of 18:2c18:2c PE and 18:1t18:1t PE exhibit complex phase behaviour involving limited fluid-solid immiscibility at low temperatures and formation of a phase allowing isotropic motional averaging at higher temperatures. (4) 31P-NMR provides a graphic method for investigating the miscibility properties of mixed PE systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号