首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of nitrite or oxaloacetate, intact chloroplasts evolved oxygen at a significant rate for the initial 1 to 2 min of illumination. Subsequently, oxygen evolution was suppressed progressively. The suppressed oxygen evolution was stimulated strikingly by NH4Cl. The results indicate that coupled electron flow in intact chloroplasts is controlled in the light, and the control is released by NH4Cl. However, at low concentrations, NH4Cl was not an effective uncoupler of photophosphorylation in intact chloroplasts. Intrachloroplast ATP levels and ATP/ADP ratios were not significantly influenced by NH4Cl. In contrast, the quenching of 9-aminoacridine fluorescence, which can be used to indicate the intrathylakoid pH in intact chloroplasts, was reduced drastically even by low concentrations of NH4Cl. This suggests that the chloroplast phosphorylation potential is not in equilibrium with the proton gradient. In coupled chloroplasts, the intrathylakoid pH was lower in the light with nitrite than with oxaloacetate as electron acceptor. Electron flow was also more effectively controlled in chloroplasts illuminated with nitrite than with oxaloacetate. It is concluded that the intrathylakoid pH, not the phosphorylation potential, is a factor in the control of the rate of electron flow in intact chloroplasts.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - OAA oxalo-acetate - MES 2-(N-morpholino)-ethanesulfonic acid - HEPES N-2-hyroxyethylpiperazine-N-2-ethanesulfonic acid Postal address  相似文献   

2.
When intact chloroplasts are incubated in the dark with dihydroxyacetone phosphate, an increase in fructose 1,6-bisphosphatase activity occurs which resembles the reductive activation observed in illuminated chloroplasts. Under optimum conditions, the activity increases to about 150 μmol · h?1 · mg?1 chlorophyll within 60 min. The dark activation of the enzyme is reversed by electron acceptors such as oxaloacetate, nitrite, and 3-phosphoglycerate plus ATP. Activation is most marked under strictly anaerobic conditions, being strongly inhibited by O2. It is concluded that NADPH, generated from dihydroxyacetone phosphate in situ in the reaction catalyzed by NADP+-dependent glyceraldehyde phosphate dehydrogenase, can provide electrons for the reductive activation of fructose 1,6-bisphosphatase in the dark.  相似文献   

3.
U. Heber  M.R. Kirk 《BBA》1975,376(1):136-150
Since coupling between phosphorylation and electron transport cannot be measured directly in intact chloroplasts capable of high rates of photosynthesis, attempts were made to determine ATP2 e ratios from the quantum requirements of glycerate and phosphoglycerate reduction and from the extent of oxidation of added NADH via the malate shuttle during reduction of phosphoglycerate in light. These different approaches gave similar results. The quantum requirement of glycerate reduction, which needs 2 molecules of ATP per molecule of NADPH oxidized was found to be pH-dependent. 9–11 quanta were required at pH 7.6, and only about 6 at pH 7.0. The quantum requirement of phosphoglycerate reduction, which consumes ATP and NADPH in a 11 ratio, was about 4 both at pH 7.6 and at 7.0. ATP2 e ratios calculated from the quantum requirements and the extent of phosphoglycerate accumulation during glycerate reduction were usually between 1.2 and 1.4, occasionally higher, but they never approached 2.Although the chloroplast envelope is impermeable to pyridine nucleotides, illuminated chloroplasts reduced added NAD via the malate shuttle in the absence of electron acceptors and also during the reduction of glycerate or CO2. When phosphoglycerate was added as the substrate, reduction of pyridine-nucleotides was replaced by oxidation and hydrogen was shuttled into the chloroplasts to be used for phosphoglycerate reduction even under light which was rate-limiting for reduction. This indicated formation of more ATP than NADPH by the electron transport chain. From the rates of oxidation of external NADH and of phosphoglycerate reduction at very low light intensities ATP2e ratios were calculated to be between 1.1 and 1.4.Fully coupled chloroplasts reduced oxaloacetate in the light at rates reaching 80 and in some instances 130 μmoles · mg?1 chlorophyll · h?1 even though ATP is not consumed in this reaction. The energy transfer inhibitor phlorizin did not significantly suppress this reduction at concentrations which completely inhibited photosynthesis. Uncouplers stimulated oxaloacetate reduction by factors ranging from 1.5 to more than 10. Chloroplasts showing little uncoupler-induced stimulation of oxaloacetate reduction were highly active in photoreducing CO2. Measurements of light intensity dependence of quantum requirements for oxaloacetate reduction gave no indication for the existence of uncoupled or basal electron flow in intact chloroplasts. Rather reduction is brought about by loosely coupled electron transport. It is concluded that coupling of phosphorylation to electron transport in intact chloroplasts is flexible, not tight. Calculated ATP2e ratios were obtained under conditions, where coupling should be expected to be optimal, i.e. at low phosphorylation potentials [ATP][ADP] [Pi]. Flexible coupling implies, that ATP2e ratios should decrease with increasing phosphorylation potentials inside the chloroplasts.  相似文献   

4.
Woo KC 《Plant physiology》1983,72(2):313-320
This study examines the effect of antimycin A and nitrite on 14CO2 fixation in intact chloroplasts isolated from spinach (Spinacia oleracea L.) leaves. Antimycin A (2 micromolar) strongly inhibited CO2 fixation but did not appear to inhibit or uncouple linear electron transport in intact chloroplasts. The addition of small quantities (40-100 micromolar) of nitrite or oxaloacetate, but not NH4Cl, in the presence of antimycin A restored photosynthesis. Antimycin A inhibition, and the subsequent restoration of photosynthetic activities by nitrite or oxaloacetate, was observed over a wide range of CO2 concentration, light intensity, and temperature. High O2 concentration (up to 240 micromolar) did not appear to influence the extent of the inhibition by antimycin A, nor the subsequent restoration of photosynthetic activity by nitrite or oxaloacetate. Studies of O2 exchanges during photosynthesis in cells and chloroplasts indicated that 2 micromolar antimycin A stimulated O2 uptake by about 25% while net O2 evolution was inhibited by 76%. O2 uptake in chloroplasts in the presence of 2 micromolar antimycin A was 67% of total O2 evolution. These results suggest that only a small proportion of the O2 uptake measured was directly linked to ATP generation. The above evidence indicates that cyclic photophosphorylation is the predominant energy-balancing reaction during photosynthesis in intact chloroplasts. On the other hand, pseudocyclic O2 uptake appears to play only a minimal role.  相似文献   

5.
In isolated intact chloroplasts, maximal rates of photosynthetic O2 evolution (in saturating HCO?3) are associated with a critical transthylakoid proton gradient as a result of the stoichiometric consumption of 2 mol NADPH and 3 mol ATP/mol CO2 fixed. Studies with the fluorescent probe 9-aminoacridine reveal that in the illuminated steady state the critical ΔpH is 3.9.CO2-dependent O2 evolution is inhibited by increases of 0.1–0.2 in ΔpH that occur when catalase is omitted from the medium, NO?2 is included as an electron acceptor, or when chloroplasts are illuminated under low partial pressures of O2. Low concentrations of antimycin (0.33 μM) or NH4Cl (0.33 mM) decrease ΔpH and relieve this inhibition of electron flow. The energy transfer inhibitor quercetin lowers the high ATP/ADP ratio associated with these conditions, but does not lower ΔpH or relieve the inhibition.A decrease of ΔpH below 3.9 by weaker illumination, millimolar levels of NH4Cl or micromolar levels of antimycin, results in lower rates of photosynthesis owing to limitation by the phosphorylation rate.These findings show that in absence of rate limitation by the carbon cycle, the extent of thylakoid energization is related to the ratio of ATP to NADPH production and in turn, the rate of CO2 assimilation.  相似文献   

6.
Ursula Ziem-Hanck  Ulrich Heber 《BBA》1980,591(2):266-274
In the absence of electron acceptors and of oxygen a proton gradient was supported across thylakoid membranes of intact spinach chloroplasts by far-red illumination. It was decreased by red light. Inhibition by red light indicates effective control of cyclic electron flow by Photosystem II. Inhibition was released by oxygen which supported a large proton gradient. Oxygen appeared to act as electron acceptor simultaneously preventing over-reduction of electron carriers of the cyclic electron transport pathway. It thus has an important regulatory function in electron transport. Under anaerobic conditions, the inhibition of electron transport caused by red illumination could also be released and a large proton gradient could be established by oxaloacetate, nitrite and 3-phosphoglycerate, but not by bicarbonate. In the absence of oxygen, ATP levels remained low in chloroplasts illuminated with red light even when bicarbonate was present. They increased when electron acceptors were added which could release the over-reduction of the electron transport chain. Inhibition of electron transport in the presence of bicarbonate was relieved and CO2-fixation was initiated by oxygen concentrations as low as about 10 μM. Once CO2 fixation was initiated, very low oxygen levels were sufficient to sustain it. The results support the assumption that pseudocyclic electron transport is necessary to poise the electron transport chain so that a proper balance of linear and cyclic electron transport is established to supply ATP for CO2 reduction.  相似文献   

7.
9-Aminoacridine has been used to monitor the intrathylakoid pH of photo-synthetically competent intact chloroplasts. Values obtained from 9-aminoacridine accumulation in the chloroplasts must be corrected for light-dependent binding of 9-aminoacridine to the thylakoid membranes. During nitrite reduction by intact chloroplasts, the intrathylakoid proton concentration increased. It decreased somewhat during CO2 reduction. However, low concentrations of uncoupling amines such as NH3 or cyclohexylamine, which rapidly penetrated the chloroplast envelope and decreased the intrathylakoid proton concentration, failed to reduce, and actually stimulated, rates of CO2-dependent oxygen evolution even under rate-limiting light. In contrast, low concentrations of carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or nigericin, which inhibited CO2 reduction, even appeared to increase the intrathylakoid proton concentration. As indicated by measurements of the 515 nm signal of the chloroplasts, the light-induced membrane potential was not much affected by low concentrations of the uncoupling amines, but was decreased by FCCP and by high concentrations of the amines. Even in the presence of high concentrations of NH4Cl, ATP/ADP ratios of illuminated chloroplasts remained far above the ratios observed in the dark. In contrast, low concentrations of FCCP were sufficient to reduce ATP/ADP ratios to the dark value even under high intensity illumination. The observations are difficult to explain within the framework of the chemiosmotic hypothesis as presently discussed.  相似文献   

8.
Shigeru Itoh  Shinji Morita 《BBA》1982,682(3):413-419
(1) The relation between the membrane potential and phosphorylation was studied in chloroplasts rapidly prepared from illuminated spinach leaves (light chloroplasts) and from dark-adapted leaves (dark chloroplasts). Light chloroplasts had a higher ATP hydrolysis activity than dark chloroplasts. (2) In the presence of ADP or ATP, a rapidly decaying phase of the field-indicating 518 nm absorbance change with a half-time of 15 ms became apparent in addition to the slow phase with a half-time of more than 300 ms in either type of chloroplast. Under these conditions, light chloroplasts showed a larger rapid phase than dark chloroplasts. (3) The rapid phase was suppressed by dicyclohexylcarbodiimide and was assumed to reflect the dissipation of membrane potential due to proton movements inside the CF1-CF0 ATP synthetase. (4) A model for the proton movement in ATP synthetase is proposed.  相似文献   

9.
Synechococcus R-2 (PCC 1942) actively accumulates sulphate in the light and dark. Intracellular sulphate was 1.35 ± 0.23 mol m?3 (light) and 0.894 ± 0.152 mol m?3 (dark) under control conditions (BG-11 media: pHo, 7.5; [SO42?]o, 0.304 mol m?3). The sulphate transporter is different from that found in higher plants: it appears to be an ATP-driven pump transporting one SO42?/ATP [ΔμSO42?i,o=+ 27.7 ± 0.24 kJ mol?1 (light) and + 24 ± 0.34 kj mol?1 (dark)]. The rate of metabolism of SO42?at pHo, 7.5 was 150 ± 28 pmol m?2 s?1 (n = 185) in the light but only 12.8 ± 3.6 pmol m?2 s?1 (n = 61) in the dark. Light-driven sulphate uptake is partially inhibited by DCMU and chloramphenicol. Sulphate uptake is not linked to potassium, proton, sodium or chloride transport. The alga has a constitutive over-capacity for sulphate uptake [light (n= 105): Km= 0.3 ± 0.1 mmol m?3, Vmax, = 1.8 ± 0.6 nmol m?2 s?1; dark (n= 56): Km= 1.4 ± 0.4 mmol m?3, Vmax= 41 ± 22 pmol m?2 s?1]. Sulphite (SO32?) was a competitive inhibitor of sulphate uptake. Selenate (SeO42?) was an uncompetitive inhibitor.  相似文献   

10.
Purified mesophyll protoplasts from the C4 plant Digitaria sanguinalis were used to prepare intact mesophyll chloroplasts with low cytoplasmic contamination. The procedure involved breakage of protoplasts, differential centrifugation, partition in a dextran-polyethylene glycol two-phase system, and Percoll density gradient centrifugation. The final chloroplast preparation contained about 80% intact chloroplasts with a phosphoenolpyruvate carboxylase contamination of 0.2–1% of the original protoplast activity, corresponding to 1–6 μmol 14CO2 fixed/mg Chl h. The purified chloroplasts showed substrate-dependent oxygen evolution in the range of 40–150 μmol substrate reduced/mg Chl h, with phosphoglycerate or oxaloacetate as substrate. Both reactions were stimulated 1.5 fold by pyruvate and further by addition of the other substrate. These measurements indicated that phosphoglycerate reduction was limited by substrate transport across the chloroplast envelope. Without added substrate, the chloroplasts consumed oxygen via pseudo-cyclic electron transport in the light. Also this reaction was stimulated by pyruvate. Phosphoglycerate-dependent oxygen evolution was inhibited by Pi and by phosphoenolpyruvate to about the same extent with purified chloroplasts, but only by Pi with protoplast extracts. This suggests that phosphoglycerate, Pi and phosphoenolpyruvate share a common carrier, similar to the Pi-translocator in C3 chloroplasts, and that the lack of inhibition obtained with phosphoenolpyruvate and unpurified chloroplasts is artefactual, possibly due to oxaloacetate formation from added phosphoenolpyruvate and concomitant stimulation of oxygen evolution by oxaloacetate reduction. Furthermore, the results suggest that phosphoenolpyruvate is transported with a Km similar to that of Pi in C4 mesophyll chloroplasts.  相似文献   

11.
Activation and Deactivation of H-ATPase in Intact Chloroplasts   总被引:4,自引:2,他引:2       下载免费PDF全文
The light activation mechanism of the latent H+-ATPase was investigated in intact spinach (Spinacia oleracea, Hybrid 424) chloroplasts. The following observations were made. (a) Photosystem I electron acceptors such as methyl viologen, nitrite, oxaloacetate, etc., inhibit the light activation of the enzyme. (b) The electron transfer inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) fully inhibits the process. (c) Ascorbate plus diaminodurene or dithionite can restore light activation in DCMU-poisoned chloroplasts. (d) The activated state of the enzyme decays rather slowly (within a few minutes) after illumination of the intact chloroplasts. (e) The rate of dark decay is accelerated by oxidants (H2O2 or ferricyanide) and slowed down by dithiothreitol.

It is suggested that the physiological mechanism for regulation of the H+-ATPase involves oxidation and reduction reactions in a manner which resembles the regulation of the light-activated carbon cycle enzymes.

  相似文献   

12.
Christoph Giersch 《BBA》1983,725(2):309-319
Amines have been shown recently to stimulate at low concentrations the steady-state rate of photophosphorylation by unbroken chloroplasts (Giersch, C. (1982) Z. Naturforsch. 37c, 242–250). In the present contribution it is demonstrated that not only amines but also the carboxylic ionophores nigericin and monensin at concentrations of 10 and 150 nM, respectively, stimulate the phosphorylation rate. The ATP2e ratio is not decreased upon the addition of nigericin at concentrations that stimulate phosphorylation. Nigericin-induced stimulation is observed only in the presence of sufficient external potassium, indicating that the observed stimulation is unlikely to be a side-effect of the uncoupler but is related to H+-K+ exchange. The proton permeability of the thylakoid membrane is increased and the proton gradient decreased by amounts of nigericin that stimulate phosphorylation. The membrane potential is not affected in the steady state, indicating that the proton-motive force is slightly reduced upon addition of the ionophore. Data on the proton-motive force were related to maximum values of the phosphorylation potential, which was 45 000–50 000 M?1 in the absence and 30 000–35 000 M?1 in the presence of 10 nM nigericin. The observation that the ATP2e ratio is not decreased in the presence of uncoupler-induced proton leakage is suggested to indicate that the thylakoid lumen does not represent a homogeneous phase of constant proton electrochemical potential. The results presented here are in agreement with the chemiosmotic concept as far as energetic aspects are concerned but seem to be at variance with the postulated free mobility of protons inside the thylakoids. A tentative model of uncoupler-induced stimulation of phosphorylation is presented.  相似文献   

13.
The light-dependent quenching of 9-aminoacridine fluorescence was used to monitor the state of the transthylakoid proton gradient in illuminated intact chloroplasts in the presence or absence of external electron acceptors. The absence of appreciable light-dependent fluorescence quenching under anaerobic conditions indicated inhibition of coupled electron transport in the absence of external electron acceptors. Oxygen relieved this inhibition. However, when DCMU inhibited excessive reduction of the plastoquinone pool in the absence of oxygen, coupled cyclic electron transport supported the formation of a transthylakoid proton gradient even under anaerobiosis. This proton gradient collapsed in the presence of oxygen. Under aerobic conditions, and when KCN inhibited ribulose bisphosphate carboxylase and ascorbate peroxidase, fluorescence quenching indicated the formation of a transthylakoid proton gradient which was larger with oxygen in the Mehler reaction as electron acceptor than with methylviologen at similar rates of linear electron transport. Apparently, cyclic electron transport occured simultaneously with linear electron transport, when oxygen was available as electron acceptor, but not when methylviologen accepted electrons from Photosystem I. The ratio of cyclic to linear electron transport could be increased by low concentrations of DCMU. This shows that even under aerobic conditions cyclic electron transport is limited in isolated intact chloroplasts by excessive reduction of electron carriers. In fact, P700 in the reaction center of Photosystem I remained reduced in illuminated isolated chloroplasts under conditions which resulted in extensive oxidation of P700 in leaves. This shows that regulation of Photosystem II activity is less effective in isolated chloroplasts than in leaves. Assuming that a Q-cycle supports a H+/e ratio of 3 during slow linear electron transport, vectorial proton transport coupled to Photosystem I-dependent cyclic electron flow could be calculated. The highest calculated rate of Photosystem I-dependent proton transport, which was not yet light-saturated, was 330 mol protons (mg chlorophyll h)–1 in intact chloroplasts. If H+/e is not three but two proton transfer is not 330 but 220 mol (mg Chl H)–1. Differences in the regulation of cyclic electron transport in isolated chloroplasts and in leaves are discussed.  相似文献   

14.
The dissociation of a series of bovine catalases, in which a proportion of the carboxylic acid groups of glutamic and aspartic acids have been chemically modified by coupling with glycine methyl ester (GME) or ethylenediamine (ED), has been investigated by sedimentation rate and equilibrium methods. Sedimentation equilibrium measurements on GME derivatives have been analysed in terms of a monomer-dimer-trimer- tetramer model. The results show that the association of monomeric (M1) catalase subunits is consistent with the equilibria 4M1?2M2?M4. The Gibbs energies of association at 284K of the monomeric subunit to dimes (M2) and tetramers (M4) were found to be in the range ? 28 to ? 30 kJ mol?1 and ? 91 to ? 97 kJ mol ?1, respectively. The Gibbs energy for association of dimer to tetramer is in the range ? 32 to ? 34 kJ mol?1. Chemical modification of bovine catalase markedly increases its susceptibility to dissociation by sodium n-dodecyl sulphate (SDS) and sedimentation rate measurements suggest that the initial event on addition of SDS is the dissociation of the whole molecule to half-molecules  相似文献   

15.
In the presence of purified nitrate reductase (NR) and 1 mM NADH, illuminated pea chloroplasts catalysed reduction of NO3? to NH3 with the concomitant evolution of O2. The rates were slightly less than those for reduction of NO2? to NH3 and O2, evolution by chloroplasts in the absence of NR and NADH (ca 6 μg atoms N/mg Chl/hr). Illuminated chloroplasts quantitatively reduced 0.2 mM oxaloacetate (OAA) to malate. In the presence of an extrachloroplast malate-oxidizing system comprised of NAD-specific malate dehydrogenase (NAD-MDH), NAD, NR and NO3?, illuminated chloroplasts supported OAA-dependent reduction of NO3? to NH3 with the evolution of O2. The reaction did not proceed in the absence of any of these supplements or in the dark but malate could replace OAA. The results are consistent with the reduction of NO3?by reducing equivalents from H2O involving a malate/OAA shuttle. The ratios for O2, evolved: C4-acid supplied and N reduced: C4-acid supplied in certain experiments imply recycling of the C4-acids.  相似文献   

16.
The light dependent energization of the thylakoid membrane was analyzed in isolated intact spinach (Spinacia oleracea L.) chloroplasts incubated with different concentrations of inorganic phosphate (Pi). Two independent methods were used: (a) the accumulation of [14C]5,5-dimethyl-2,4-oxazolidinedione and [14C] methylamine; (b) the energy dependent chlorophyll fluorescence quenching. The inhibition of CO2 fixation by superoptimal medium Pi or by adding glyceraldehyde—an inhibitor of the Calvin cycle—leads to an increased energization of the thylakoid membrane; however, the membrane energization decreases when chloroplasts are inhibited by suboptimal Pi. This specific `low phosphate' effect could be partially reversed by adding oxaloacetate, which regenerates the electron acceptor NADP+ and stimulates linear electron transport. The energization seen in low Pi is, however, always lower than in superoptimal Pi, even in the presence of oxaloacetate. Energization recovers in the presence of low amounts of N,N′-dicyclohexylcarbodiimide, which reacts with proton channels including the coupling factor 1 ATP synthase. N,N′-Dicyclohexylcarbodiimide has no effect on energization of chloroplasts in superoptimal Pi. These results suggest there is a specific `low phosphate' proton leak in the thylakoids, and its origin is discussed.  相似文献   

17.
Intact chloroplasts capable of high rates of photosynthesis fail to reduce CO2 when illuminated in the absence of oxygen. While anaerobiosis limits proton gradient formation leading to ATP deficiency (Ziem-Hanck, U. and Heber, U. (1980) Biochim. Biophys. Acta 591, 266–274), light activation of fructose-1,6-bisphosphatase was also inhibited by anaerobiosis, whereas light activation of NADP-malate dehydrogenase was stimulated by anaerobiosis, indicating that reductant was still available for light activation. The chloroplast pool of NADP was largely reduced during illumination under anaerobiosis and electron transport to oxaloacetate was not inhibited by anaerobic conditions. Significant light activation of fructose-bisphosphatase was observed in anaerobic chloroplasts with 3-phosphoglycerate as substrate, but not with dihydroxyacetone phosphate (3-phosphoglycerate supports electron transport and hence proton gradient formation). In the absence of added substrates, illumination of anaerobic chloroplasts resulted in some light activation of fructose-bisphosphatase when the pH of the medium was increased. Under these conditions, light activation was stimulated by dihydroxyacetone phosphate. Dihydroxyacetone phosphate added together with oxaloacetate allowed light activation of fructose-bisphosphatase in anaerobic chloroplasts, while neither substrate added alone was effective. Formation of a transthylakoid proton gradient can therefore substitute for an alkaline suspension medium by causing an alkaline shift of the stromal pH on illumination. The data are interpreted as indicating that fructose-bisphosphatase, but not NADP-malate dehydrogenase, requires an alkaline pH and the presence of substrate for rapid reductive light activation and they bear on the interpretation of the lag observed in photosynthesis in chloroplasts and leaves on illumination after a prolonged dark period.  相似文献   

18.
Calcium fluxes across the envelope of intact spinach chloroplasts (Spinacia oleracea L.) in the light and in the dark were investigated using the metallochromic indicator arsenazo III. Light induces Ca2+ influx into chloroplasts. The action spectrum of light-induced Ca2+ influx and the inhibitory effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) indicate an involement of photosynthetic electron transport in this process. The driving force for light-induced Ca2+ influx is most likely a change in the membrane potential component of the proton motive force. This was demonstrated by the use of agents modifying the membrane potential (lipophilic cations, ionophores, different KCl concentrations). The activation energy of the observed Ca2+ influx is about 92 kJ mol-1. Verapamil and nifedipine, two Ca2+-channel blockers, have no inhibitory effect on light-induced Ca2+ influx, but enhance ferricyanide-dependent oxygen evolution. Inhibition of Ca2+ influx by ruthenium red reduces the light-dependent decrease in stromal NAD+ level.Abbreviations and symbols Chl chlorophyll - DCMU 3-(3',4'-dichlorophenyl)-1,1-dimethylurea - FCCP earbonyl cyanide p-trifluoromethoxyphenylhydrazone - PGA 3-phosphoglyceric acid - ABA+ tetrabutylammonium chloride - TPP+ tetraphenylphosphonium chloride - E membrane potential  相似文献   

19.
Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H+/2e) but it has been suggested that stoichiometry may be 3H+/2e based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD+ and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc1 complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H+/2e in mouse and human cells at high and physiological proton motive force.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号