首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of cellular energy metabolism   总被引:10,自引:0,他引:10  
  相似文献   

2.
The occurrence of a Crabtree effect in HeLa cells was detected. Some properties of pyruvate kinase (PK) were also evaluated. Hexose phosphate, triose-phosphate and phosphoenolpyruvate (PEP) significantly decreased the oxygen consumption of digitonin-permeabilized HeLa cells, which were oxidizing succinate. The Crabtree effect promoted by PEP was concentration-dependent and was lowered by an increase of ADP concentration, suggesting a participation of PK. The dependence of fructose-1,6-bisphosphate (FDP) by HeLa cell PK was observed. The PK of HeLa cells was inhibited by L -alanine only in the absence of FDP, while in the presence of the metabolite, an increase in the activity was observed. PK was also inhibited in the presence of L -histidine and L -leucine, while L -serine promoted activation. L -Cysteine and L -phenylalanine also inhibited the PK of HeLa cells. This, together with the sigmoidal character in relation to substrate concentration, suggests the presence of the K-type of PK in HeLa cells. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Kluyveromyces lactis is a yeast widely used in processes related to milk whey use and lactose fermentation. However, contradictory information about some aspects related to the respirofermentative metabolism of this yeast is found in the literature. We have studied ethanol production and oxygen use in discontinuous and continuous cultures of K. lactis under hypoxic and aerobic conditions. Growth in nonfermentable carbon sources reflects a more efficient respiratory capacity of K. lactis in relation to Saccharomyces cerevisiae; however, in both species, similar glucose fermentation levels under aerobic oxygen-limited conditions are found. Continuous K. lactis cultures in fully oxidative conditions show the oxygen and substrate uptake rates typical of a respiration-unlimited Crabtree-negative yeast; however, a small residual fermentation is present even when respiration is not limited. Some aspects of the Crabtree effect in K. lactis are discussed. The impossibility of including K. lactis in any group of the metabolism-based classification from Alexander and Jeffries (1990) has led us to the formulation of a new group which incorporates the peculiarities of this and other related yeasts.  相似文献   

4.
The total amount of cellular mitochondrial DNA (mtDNA) varies widely and seems to be related to the nature and metabolic state of tissues and cells in culture. It is not known, however, whether this variation has any significance in vivo, and to which extent it regulates energy production. To better understand the importance of the cellular mtDNA level, we studied the influence of a gradual reduction of mtDNA copy number on oxidative phosphorylation in two models: (a) a control human cell line treated with different concentrations of 2′, 3′-dideoxycytidine, a nucleoside analogue that inhibits mtDNA replication by interfering with mitochondrial DNA polymerase γ, and (b) a cell line derived from a patient presenting mtDNA depletion. The two models were used to construct biochemical and phenotypic threshold curves. Our results show that oxidative phosphorylation activities are under a tight control by the amount of mtDNA in the cell, and that the full complement of mtDNA molecules are necessary to maintain a normal energy production level.  相似文献   

5.
A growing body of recent studies bring into light an important cross-talk between immune response and metabolism not only at the level of the organism as a whole, but also at the level of the individual cells. Cellular bioenergetics functions not only as a power plant to fuel up the cells, but the intermediate metabolites are shown to play an important role to modulate cellular responses. It is especially the pathways through which a cell metabolizes glucose that have been recently shown to influence both innate and adaptive immune responses, with oxidative phosphorylation used by resting or tolerant cells, while aerobic glycolysis (also termed ‘Warburg effect’) fueling activated cells. In this review we will address how the center metabolism shifts upon activation in the innate immune cells and how the intermediate metabolites modulate the function of immune cells.  相似文献   

6.
目的:探讨GPC3(glypican 3)在肝癌细胞糖酵解中的调控作用。方法:采用si RNA(small interfering RNA)干扰肝癌细胞中GPC3的表达后,采用q PCR(quantitative PCR)与Western blot实验检测肿瘤糖酵解关键调控分子Glut1(glucose transporter-1)、HK2(hexokinase 2)与LDH-A(Lactate Dehydrogenase A)的表达,通过检测培养液中葡萄糖的减少量分析GPC3对细胞葡萄糖摄取情况,通过检测培养液中乳酸含量与PH值分析GPC3对细胞乳酸产生的影响,通过检测细胞的氧耗速率,分析GPC3对线粒体氧化磷酸化功能的影响。结果:干扰肝癌细胞中GPC3的表达可抑制糖酵解关键调控分子Glut1、HK2与LDH-A表达,降低肝癌细胞葡萄糖摄取速率和细胞氧耗速率,且细胞培养液PH升高,乳酸产生减少。结论:肝癌细胞中GPC3高表达通过上调糖酵解关键调控分子Glut1、HK2与LDH-A表达而促进肝癌细胞糖酵解效应,同时抑制线粒体氧化磷酸化活性。这些结果进一步提示糖代谢重编程可能是GPC3促进肝癌增殖与转移的重要机制。  相似文献   

7.
During the last decades a considerable amount of research has been focused on cancer. A number of genetic and signaling defects have been identified. This has allowed the design and screening of a number of anti-tumor drugs for therapeutic use. One of the main challenges of anti-cancer therapy is to specifically target these drugs to malignant cells. Recently, tumor cell metabolism has been considered as a possible target for cancer therapy. It is widely accepted that tumors display an enhanced glycolytic activity and oxidative phosphorylation down-regulation (Warburg effect). Therefore, it seems reasonable that disruption of glycolysis might be a promising candidate for specific anti-cancer therapy.  相似文献   

8.
Cell proliferation is a delicately regulated process that couples growth signals and metabolic demands to produce daughter cells. Interestingly, the proliferation of tumor cells immensely depends on glycolysis, the Warburg effect, to ensure a sufficient amount of metabolic flux and bioenergetics for macromolecule synthesis and cell division. This unique metabolic derangement ould provide an opportunity for developing cancer therapeutic strategy, particularly when other diverse anti-cancer treatments have been proved ineffective in achieving durable response, largely due to the emergence of resistance. Recent advances in deeper understanding of cancer metabolism usher in new horizons of the next generation strategy for cancer therapy. Here, we discuss the focused review of cancer energy metabolism, and the therapeutic exploitation of glycolysis and OXPHOS as a novel anti-cancer strategy, with particular emphasis on the promise of this approach, among other cancer metabolism targeted therapies that reveal unexpected complexity and context-dependent metabolic adaptability, complicating the development of effective strategies. [BMB Reports 2014; 47(3): 158-166]  相似文献   

9.
Regulation of primary carbon metabolism in Kluyveromyces lactis   总被引:2,自引:0,他引:2  
In the recent past, through advances in development of genetic tools, the budding yeast Kluyveromyces lactis has become a model system for studies on molecular physiology of so-called “Nonconventional Yeasts.” The regulation of primary carbon metabolism in K. lactis differs markedly from Saccharomyces cerevisiae and reflects the dominance of respiration over fermentation typical for the majority of yeasts. The absence of aerobic ethanol formation in this class of yeasts represents a major advantage for the “cell factory” concept and large-scale production of heterologous proteins in K. lactis cells is being applied successfully. First insight into the molecular basis for the different regulatory strategies is beginning to emerge from comparative studies on S. cerevisiae and K. lactis. The absence of glucose repression of respiration, a high capacity of respiratory enzymes and a tight regulation of glucose uptake in K. lactis are key factors determining physiological differences to S. cerevisiae. A striking discrepancy exists between the conservation of regulatory factors and the lack of evidence for their functional significance in K. lactis. On the other hand, structurally conserved factors were identified in K. lactis in a new regulatory context. It seems that different physiological responses result from modified interactions of similar molecular modules.  相似文献   

10.
Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S. cerevisiae strains do not ferment xylose at economically viable rates and yields, and they require respiration to achieve sufficient xylose metabolic flux and energy return for growth aerobically. Here, we evolved respiration-deficient S. cerevisiae strains that can grow on and ferment xylose to ethanol aerobically, a trait analogous to the Crabtree/Warburg Effect for glucose. Through genome sequence comparisons and directed engineering, we determined that duplications of genes encoding engineered xylose metabolism enzymes, as well as TKL1, a gene encoding a transketolase in the pentose phosphate pathway, were the causative genetic changes for the evolved phenotype. Reengineered duplications of these enzymes, in combination with deletion mutations in HOG1, ISU1, GRE3, and IRA2, increased the rates of aerobic and anaerobic xylose fermentation. Importantly, we found that these genetic modifications function in another genetic background and increase the rate and yield of xylose-to-ethanol conversion in industrially relevant switchgrass hydrolysate, indicating that these specific genetic modifications may enable the sustainable production of industrial biofuels from yeast. We propose a model for how key regulatory mutations prime yeast for aerobic xylose fermentation by lowering the threshold for overflow metabolism, allowing mutations to increase xylose flux and to redirect it into fermentation products.  相似文献   

11.
The oxygen dependence of cellular energy metabolism.   总被引:14,自引:0,他引:14  
Suspensions of cultured C 1300 neuroblastoma cells, sarcoma 180 ascites tumor cells, and Tetrahymena pyriformis cells were used to study the oxygen dependence of cellular energy metabolism. Cellular respiration was found to be almost independent of oxygen tension to values of less than 20 μm with an apparent Km for oxygen of less than 1 μm. In contrast, the reduction of mitochondrial cytochrome c was found to be dependent on oxygen tension at all values from 240 μm downward. Oxygen dependence was also observed in terms of cellular energy metabolism expressed as adenosine triphosphate and adenosine diphosphate concentrations. These data provide direct evidence that in intact cells mitochondrial oxidative phosphorylation is oxygen dependent throughout the physiological range of oxygen tension (air saturation and below). The respiratory rate is maintained constant when the oxygen tension is lowered by decreasing values of the cytosolic [ATP][ADP][Pi] and intramitochondrial [NAD]+][NADH] because these regulatory parameters adjust to maintain a constant rate of ATP synthesis. The lack of oxygen dependence in the respiratory rate means that the rate of cellular ATP utilization is essentially oxygen independent until the mitochondria can no longer synthesize ATP at the required rate and [ATP][ADP][Pi].  相似文献   

12.
Normal cells mainly rely on oxidative phosphorylation as an effective energy source in the presence of oxygen. In contrast, most cancer cells use less efficient glycolysis to produce ATP and essential biomolecules. Cancer cells gain the characteristics of metabolic adaptation by reprogramming their metabolic mechanisms to meet the needs of rapid tumor growth. A subset of cancer cells with stem characteristics and the ability to regenerate exist throughout the tumor and are therefore called cancer stem cells (CSCs). New evidence indicates that CSCs have different metabolic phenotypes compared with differentiated cancer cells. CSCs can dynamically transform their metabolic state to favor glycolysis or oxidative metabolism. The mechanism of the metabolic plasticity of CSCs has not been fully elucidated, and existing evidence indicates that the metabolic phenotype of cancer cells is closely related to the tumor microenvironment. Targeting CSC metabolism may provide new and effective methods for the treatment of tumors. In this review, we summarize the metabolic characteristics of cancer cells and CSCs and the mechanisms of the metabolic interplay between the tumor microenvironment and CSCs, and discuss the clinical implications of targeting CSC metabolism.  相似文献   

13.
More than 50 years ago, Warburg proposed that the shift in glucose metabolism from oxidative phosphorylation (OXPHOS) to glycolysis occurring in spite of an adequate oxygen supply was at the root of cancer. This hypothesis often disregarded over the following years has recently stirred up much interest due to progress made in cancer genetics and proteomics. Studies related to renal cancers have been particularly informative to understand how abnormal use of glucose and decrease in OXPHOS are linked to cell proliferation in tumors. Indeed, in aggressive tumors such as clear cell renal carcinoma, the von Hippel–Lindau factor invalidation stabilizes the hypoxia-inducible factor (HIF) in the presence of oxygen. HIF stimulating glycolytic gene expression increases the glycolytic flux. Deficiencies in genes involved in oxidative phosphorylation that can explain the down-regulation of OXPHOS components also begin to be identified. These findings are important in the search for novel therapeutic approaches to cancer treatment.  相似文献   

14.
The Central Nervous System (CNS) function was shown to be fueled exclusively by oxidative phosphorylation (OXPHOS). This is in line with the sensitivity of brain to hypoxia, but less with the scarcity of the mitochondria in CNS. Consistently with the ectopic expression of FoF1-ATP synthase and the electron transfer chain in myelin, we have reported data demonstrating that isolated myelin vesicles (IMV) conduct OXPHOS. It may suggest that myelin sheath could be a site for the whole aerobic degradation of glucose.  相似文献   

15.
Lu H  Zhang G  Dong S 《Bioresource technology》2011,102(8):4968-4973
Contribution and relationship between oxidative phosphorylation and photophosphorylation pathways in purple non-sulfur bacteria (PNSB) wastewater treatment under weak light-micro oxygen condition were studied quantitatively. Results showed that under weak light-anaerobic condition, PNSB followed photophosphorylation with the first-order degradation kinetic constant k3 of 0.0585. Under dark-micro aerobic condition, it followed oxidative phosphorylation with k2 of 0.0896. Under weak light-micro oxygen condition, both pathways existed with k1 of 0.108. When light and oxygen both existed, oxidative phosphorylation had a strong competitiveness, it played a dominative role and counted for 92.7% in pollutants degradation, and meanwhile photophosphorylation was restrained by 81.6%. Theoretical analysis showed the common part from coenzyme Q (CoQ) to cytochrome c2 (Cyt c2) in both respiration and photosynthetic chains might cause the competition. When oxygen existed, respiration electron transport would be enhanced. Other potential explanations included that oxygen might damage the pigment and membrane system vital to photophosphorylation.  相似文献   

16.
The development of hamster eight-cell embryos is inhibited by glucose in culture medium containing inorganic phosphate (Pi). This is hypothetically attributed to the "Crabtree effect," in which enhanced glycolysis inhibits respiratory activity and oxidative metabolism. To examine this hypothesis, oxygen consumption of hamster eight-cell embryos was measured using a microelectrode. A two- to three-fold decrease in oxygen consumption was observed in embryos cultured with glucose and Pi. Oxidizable substrates and intermediates of the Krebs cycle supported embryo development only in the absence of glucose and Pi; Krebs cycle inhibitors (fluoroacetate and arsenite) arrested embryo development. Under anaerobic conditions, pyruvate and lactate did not support embryo development. Inhibition of both respiration and oxidative activity in cultured hamster embryos by glucose and Pi is consistent with the existence of a Crabtree effect and indicates that the metabolic properties of preimplantation embryonic cells differ markedly from those of most somatic cells and resemble some cancer cells.  相似文献   

17.
18.
For cells to adhere, migrate and proliferate, remodeling of the actin cytoskeleton is required. This process consumes a large amount of ATP while having an intimate connection with cellular metabolism. Signaling pathways that regulate energy homeostasis can also affect actin dynamics, whereas a variety of actin binding proteins directly or indirectly interact with the anabolic and catabolic regulators in cells. Here, we discuss the inter-regulation between actin filaments and cellular metabolism, reviewing recent discoveries on key metabolic enzymes that respond to actin remodeling as well as historical findings on metabolic stress-induced cytoskeletal reorganization. We also address emerging techniques that would benefit the study of cytoskeletal dynamics and cellular metabolism in high spatial-temporal resolution.  相似文献   

19.
20.
Short-period (40-50 min) synchronized metabolic oscillation was found in a continuous culture of yeast Saccharomyces cerevisiae under aerobic conditions at low-dilution rates. During oscillation, many parameters changed cyclically, such as dissolved oxygen concentration, respiration rate, ethanol and acetate concentrations in the culture, glycogen, ATP, NADH, pyruvate and acetate concentrations in the cells. These changes were considered to be associated with glycogen metabolism. When glycogen was degraded, the respiro-fermentative phase was observed, in which ethanol was produced and the respiration rate decreased. In this phase, the levels of intracellular pyruvate and acetate became minimum, ATP became high and intracellular pH at its lowest level. When glycogen metabolism changed from degradation to accumulation, the respiratory phase started, during which ethanol was re-assimilated from the culture and the respiration rate increased. Intracellular pyruvate and acetate became maximum, ATP decreased and the intracellular pH appeared high. These findings may indicate new aspects of the control mechanism of glycogen metabolism and how respiration and ethanol fermentation are regulated together under aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号