首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potassium salt-induced transient increase of delayed fluorescence yield was studied in pea chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea.A simple kinetic model is proposed to account for the actinic light intensity dependence of the delayed fluorescence enhancement by the transmembrane diffusion potential induced by sudden salt addition. The electric field dependence of the rate constants for the recombination of primary separated charges with and without subsequent electronic excitation of reaction center chlorophyll was obtained.From the value of enhancement of delayed fluorescence by salt concentration gradients at saturating actinic light intensity, it is concluded that the distance, normal to thylakoid membrane surface, between the primary acceptor and the donor of Photosystem II is smaller than the membrane thickness.  相似文献   

2.
Jerome Lavergne 《BBA》1982,682(3):345-353
The kinetics and concentration dependence of the binding of dichlorophenyldimethylurea (DCMU) to Photosystem II (PS II) were monitored through fluorescence measurements. According to whether the acceptor system is in the ‘odd’ state (QB ag QB) or ‘even’ state (QB), very different results are obtained. The binding to centers in the even state is rapid ( at [DCMU] = 10−5 M and [chlorophyll] = 10 μg/ml), with a pH-independent rate. The concentration curve of the bound inhibitor (at equilibrium) corresponds to an association constant of about 3.3·107 M−1·1. The binding of the inhibitor to centers in the odd state is slow ( at pH 7, same DCMU and chlorophyll concentrations as above), and depends on pH. In the pH range 6–8, the lower the pH, the slower the kinetics. The association constant is also diminished by a factor of approx. 20 (at pH 7) compared to the even state centers. It is shown that these effects are in good agreement with predictions from Velthuys' hypothesis (Velthuys, B.R. (1981) FEBS Lett. 126, 277–281) that the mode of action of DCMU is a competition with plastoquinone for the binding to the secondary acceptor site. A large part of PS II photochemical quenching corresponds to acceptors which seem to possess a secondary acceptor distinct from B. They were called ‘non-B-type acceptors’ (Lavergne, J. (1982) Photobiochem. Photobiophys. 3, 257–285) and may be identified with Joliot's ‘Q2’ (Joliot P. and Joliot, A. (1977) Biochim. Biophys. Acta 462, 559–574). However, the rate at which the inhibition affects these non-B-type acceptors is similar to the rate of DCMU binding on the B site (i.e., slow in the odd state, fast in the even state).  相似文献   

3.
Rita Barr  Frederick L. Crane 《BBA》1980,591(1):127-134
Two possible 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive sites were found in PS II of spinach chloroplasts, depending on the pH of the assay medium used. The low site (pH 6) can be inhibited by certain quinolines, such as 8-hydroxyquinoline at concentrations less than 50 μM. The high pH site (pH 8) can be inhibited by disodium cyanamide, folic acid, or 5,6-benzoquinoline at concentrations from 50 μM to 5 mM. With the exception of orthophenanthroline, which stimulates the high pH site but does not show much inhibition at low pH, all other inhibitors gave opposite effects at the pH values used, i.e., they stimulated at low pH or inhibited at high pH, or vice versa. Several mechanisms for the observed effects are discussed.  相似文献   

4.
Peter Horton  Michael T. Black 《BBA》1983,722(1):214-218
Fluorescence induction curves in chloroplasts phosphorylated by the thylakoid protein kinase activated at low light intensity and high chlorophyll concentration have been measured. At 5 mM Mg2+, phosphorylation did not preferentially quench variable fluorescence. At 1 mM, preferential quenching of variable fluorescence was observed, indicating a second effect of phosphorylation at low Mg2+ (Horton, P. and Black, M.T. (1982) Biochim. Biophys. Acta 680, 22–27). Comparison of the extent of fluorescence decrease and the resulting ratio of variable to maximum fluorescence after phosphorylation and after lowering Mg2+ concentration demonstrated a difference between these two mechanisms of lowering of fluorescence. The significance of these results in terms of how phosphorylation may alter membrane organization is discussed.  相似文献   

5.
6.
《BBA》1978,502(3):514-523
1. The induction of Photosystem II chlorophyll fluorescence from chloroplasts blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and uncoupled with gramicidin has been measured.2. In agreement with other authors it was found that the addition of cations to chloroplasts suspended in a low-cation medium not only stimulated the intensity of fluorescence but also changed the shape of the induction from being nearly exponential to being sigmoid.3. A new theory of the photosynthetic unit of Photosystem II (Paillotin, G. (1976) J. Theor. Biol. 58, 237–252) was used to analyse the fluorescence inductions.4. A comparison of the results of the Paillotin model with the experimental data suggests that excitation energy is not able to migrate between all the photosynthetic units of a photosynthetic domain. However, it is concluded that excitation energy may migrate from one photosynthetic unit to another, and that the energy migration is in competition with other processes leading to the decay of the excitation within Photosystem II.5. It is suggested that the size of the “functional” photosynthetic unit, defined as the number of chlorophyll molecules that may communicate with a reaction centre, is variable.  相似文献   

7.
1. The induction of Photosystem II chlorophyll fluorescence from chloroplasts blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and uncoupled with gramicidin has been measured. 2. In agreement with other authors it was found that the addition of cations to chloroplasts suspended in a low-cation medium not only stimulated the intensity of fluorescence but also changed the shape of the induction from being nearly exponential to being sigmoid. 3. A new theory of the photosynthetic unit of Photosystem II (Paillotin, G. (1976) J. Theor. Biol. 58, 237--252) was used to analyse the fluorescence inductions. 4. A comparison of the results of the Paillotin model with the experimental data suggests that excitation energy is not able to migrate between all the photosynthetic units of a photosynthetic domain. However, it is concluded that excitation energy may migrate from one photosynthetic unit to another, and that the energy migration is in competition with other processes leading to the decay of the excitation within Photosystem II. 5. It is suggested that the size of the "functional" photosynthetic unit, defined as the number of chlorophyll molecules that may communicate with a reaction centre, is variable.  相似文献   

8.
The kinetics of the inhibition of photophosphorylation in chloroplasts from spinach (Spinacia oleracea) was investigated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) in small concentration intervals, starting at 10-7M. Plots of the reciprocal of photophosphorylation against concentration of DCMU gave essentially the same straight line with 2 mM nicotinamide adenine dinucleotide phosphate (NADP) together with saturating amounts of ferredoxin or with 4 mM K3Fe(CN)6 as the final acceptors for electrons. Practically complete inhibition was obtained at 3 x 10-6M DCMU. With 0.1 mM flavin mononucleotide (FMN) and ferredoxin, the inhibition between 10-7M and 10-6M DCMU was a little slower than in the other two cases. At 10-6M DCMU a break occurred to a new straight line in the plots, indicating that another reaction was inhibited. Total photophosphorylation without DCMU was about 77 μmol ATP per mg chlorophyll and hour. At the breaking point 20% remained, and inhibition was not complete even at 8 x 10-6M DCMU. The inhibitor constant for the high-DCMU reaction was in the order of 2 x 10-5M; for the low-DCMU reaction some complication made the “constant” appear negative. With phenazine methosulfate (PMS) added, DCMU was without effect on photophosphorylation. – As earlier shown by us, titration curves for intact cells of the microalga Scenedesmus show the break at 10-6M DCMU; and above 6 x 10-6M photophosphorylation in the algae is not further decreased by DCMU. The data are compared and their possible significance is discussed.  相似文献   

9.
Rufat Agalarov 《BBA》2003,1604(1):7-12
The temperature dependence of the biphasic electron transfer (ET) from the secondary acceptor A1 (phylloquinone) to iron-sulfur cluster FX was investigated by flash absorption spectroscopy in photosystem I (PS I) isolated from Synechocystis sp. PCC 6803. While the slower phase (τ=340 ns at 295 K) slowed upon cooling according to an activation energy of 110 meV, the time constant of the faster phase (τ=11 ns at 295 K) was virtually independent of temperature. Following a suggestion in the literature that the two phases arise from bidirectional ET involving two symmetrically arranged phylloquinones, QK-A and QK-B, it is concluded that energetic parameters (most likely the driving forces) rather than the electronic couplings are different for ET from QK-A to FX and from QK-B to FX. Two alternative schemes of ET in PS I are presented and discussed.  相似文献   

10.
Jean Lavorel 《BBA》1980,590(3):385-399
Dark luminescence, defined as the ability of completely relaxed (darkadapted) photosynthetic systems to emit light, has been studied in Chlorella. Three main effects have been demonstrated. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea elicits a weak emission LD of very long lifetime (several minutes); it is believed to result from a negative shift of redox potential of the secondary System II electron acceptor B producing in some centers a state Q (reduced primary acceptor), as postulated by Velthuys and Amesz ((1974) Biochim. Biophys. Acta 333, 85–94), which can recombine with an oxidizing equivalent in a state S2 present in very small amount. As in photoinduced luminescence, this recombination excites chlorophyll which then emits light. A much stronger emission LH is observed after injection of H2O2. Both signals are modified or suppressed by treatments specific of the oxygen emission system, such as: thermal denaturation at 50°C, NH2OH, etc. In addition, a weak, permanent background luminescence L0 has been observed; like LD and LH, it is a System II property and requires the integrity of the oxygen-evolving system. It is believed to reflect a very slow back flow of electrons from an endogeneous reductant pool to oxygen through part of the photosynthetic chain. Using flash preillumination, it is demonstrated that H2O2 is able to oxidize S0 into S2, the latter giving rise to LH; H2O2 does not act on S1 (or much less). The reactive site of H2O2 seems to be the same as the binding site of NH2OH. Evidence is given that the strong LH signal in particular reveals a stable, low pH of the intrathylakoid phase in Chlorella.  相似文献   

11.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl chlorophyll - BChl bacteriochlorophyll - PS Photosystem - S. 6803 Synechocystis sp. PCC 6803 - PGP potassium glycerol phosphate  相似文献   

12.
Pierre Bennoun  Yung-sing Li 《BBA》1973,292(1):162-168
Simultaneous measurements of hydroxylamine photo-oxidation and fluorescence induction were performed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). The results provide a justification for the common use of fluorescence data to estimate the concentration of active System II centers in the presence of inhibitors.The addition of DCMU to dark-adapted chloroplasts under special conditions induces a large increase of the initial yield of fluorescence. A reversible inactivation of part of the System II centers is responsible for this effect. Similar data were obtained with other classical inhibitors of oxygen evolution.  相似文献   

13.
14.
  1. The effect of preincubating spinach chloroplasts with ferricyanideon the time courses of chlorophyll- fluorescence in the presenceof 3-(3,4-dichlorophyl)-1,1-dimethylurea (DCMU) was studied.When DCMU was absent from the preincubation mixture, but wasadded just before the onset of excitation light, preincubationof chloroplasts with ferricyanide markedly affected the fluorescencekinetics. The rise-rate was lowered and consequently the areaabove the induction curve (S/Fv), which is proportional to thepool size of the electron acceptor(s) for photosystem 2, increased.The maximum increase in the S/Fv was attained after 3 min and10 min, respectively, of preincubation with 5?10–4M and3?10–5M ferricyanide.
  2. When DCMU was present during preincubationwith ferricyanide,the effect of ferricyanide in increasingthe S/Fv, was completelyeliminated.
  3. The effect of ferricyanidewas also suppressed by addition offerrocyanide to the preincubationmixture. The redox potentialof the ferri-ferrocyanide mixturewhich produced 50% suppressionof the ferricyanide effect wasabout 360 mV.
  4. A similar dependency of the ferricyanide effecton the redoxpotential was observed in Tris-treated chloroplasts.However,the redox potential of cytochrome b-559 was markedlyloweredby Tris-treatment.
  5. These results were explained byassuming the occurrence of asecondary electron acceptor, R,between the reaction centerof photosystem 2 and the DCMU-sensitivesite.
(Received February 27, 1973; )  相似文献   

15.
16.
17.
The efficiency of oxidized endogenous plastoquinone-9 (PQ-9) as a non-photochemical quencher of chlorophyll fluorescence has been analyzed in spinach thylakoids and PS II membrane fragments isolated by Triton X-100 fractionation of grana stacks. The following results were obtained: (a) After subjection of PS II membrane fragments to ultrasonic treatment in the presence of PQ-9, the area over the induction curve of chlorophyll fluorescence owing to actinic cw light increases linearly with the PQ-9/PS II ratio in the reconstitution assay medium; (b) the difference of the maximum fluorescence levels, Fmax, of the induction curves, measured in the absence and presence of DCMU, is much more pronounced in PS II membrane fragments than in thylakoids; (c) the ratio Fmax(-DCMU)/Fmax(+DCMU) increases linearly with the content of oxidized PQ-9 that is varied in the thylakoids by reoxidation of the pool after preillumination and in PS II membrane fragments by the PQ-9/PS II ratio in the reconstitution assay; (d) the reconstitution procedure leads to tight binding of PQ-9 to PS II membrane fragments, and PQ-9 cannot be replaced by other quinones; (e) the fluorescence quenching by oxidized PQ-9 persists at low temperatures, and (f) oxidized PQ-9 preferentially affects the F695 of the fluorescence emission spectrum at 77 K. Based on the results of this study the oxidized PQ-9 is inferred to act as a non-photochemical quencher via a static mechanism. Possible implications for the nature of the quenching complex are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Michael Bradbury  Neil R. Baker 《BBA》1984,765(3):275-281
Estimations of the changes in the reduction-oxidation state of Photosystem II electron acceptors in Phaseolus vulgaris leaves were made during the slow decline in chlorophyll fluorescence emission from the maximal level at P to the steady-state level at T. The relative contributions of photochemical and non-photochemical processes to the fluorescence quenching were determined from these data. At a low photon flux density of 100 μmol · m?2 · s?1, non-photochemical quenching was the major contributor to the fluorescence decline from P to T, although large charges were observed in photochemical quenching immediately after P. On increasing the light intensity 10-fold, the contribution of photochemical processes to fluorescence quenching was markedly diminished, with nearly all the P-to-T fluorescence decline being attributable to changes in non-photochemical quenching. The possible factors responsible for changes in non-photochemical quenching within the leaves are discussed.  相似文献   

19.
3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), an inhibitor of cytochrome b oxidation, has been used for the selection of three resistant mutants (diur) of Saccharomyces cerevisiae. The mutant diur-64 exhibits in vivo cross-resistance to antimycin A while diur-34 and diur-1 are more sensitive to antimycin A than the parental strain. The three mutants exhibit mitochondrial inheritance according to the following criteria: mitotic segregation of diuron-resistant and diuron-sensitive diploids is obtained among the diploid progeny of a cross between diur and dius; non-Mendelian segregation of diuron resistance (4:0) is observed in spores of tetrads issued from diuron-resistant diploid; extensive ethidium bromide treatment leads to the formation of Q- mutants which no longer transmit diur and dius alleles. Evidence for two distinct diuron-resistant loci were obtained by allelism tests. Recombination analysis shows that diuron-resistance is not located in the polar region of the mitochondrial genome. The diur loci are not linked to the erythromycin locus since the upper limit in recombinants frequency (26%) for a non-polar region is obtained between diur and eryr. A low recombinants frequency (3%) is observed in crosses between diur-34 mutation and the two mutants cob1 and cob2 suggesting that diur-34 might be located between these two cytochrome-b-deficient loci. The resistance to diuron is also expressed in vitro since the oxidation rates of succinate by sonicated submitochondrial particles from the mutants are clearly less sensitive to diuron than that of the wild type.  相似文献   

20.
A.L. Etienne 《BBA》1974,333(3):497-508
The effects of NH2OH and carbonyl cyanide m-chlorophenylhydrazone (CCCP) on 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated algae and chloroplasts were studied. In the presence of DCMU, the photochemically separated charges can only disappear through a recombination back reaction; both substances induce an irreversible reduction of the donor side and after sufficient illumination their action in the presence of DCMU leads to the formation of a permanent fluorescent state.

In the DCMU + CCCP system, a fast fluorescence induction curve is observed. The fluorescence yield is brought to its maximum by two flashes. The luminescence emission is strongly inhibited and most centers reach their permanent fluorescent state after one flash.

In the DCMU + NH2OH system, a slow fluorescence rise is observed and several saturating flashes are needed for the fluorescence yield to reach its maximum. The exhaustion of the NH2OH oxidizing capacity and the complete transformation to a permanent fluorescent state also require a large number of flashes.

The reduction pathway catalyzed by CCCP appears to be a good competitor to the back reaction, while NH2OH seems to be a relatively inefficient donor.

In addition the action of NH2OH and CCCP on fluorescence suggests that the donor side influences the quenching properties of Photosystem II centers. A possible mechanism is proposed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号