首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.  相似文献   

2.
The functional domain size for efficient excited singlet state quenching was studied in artificial aggregates of the main light-harvesting complex II (LHCIIb) from spinach and in native thylakoid membranes by picosecond time-resolved fluorescence spectroscopy and quantum yield measurements. The domain size was estimated from the efficiency of added exogenous singlet excitation quenchers-phenyl-p-benzoquinone (PPQ) and dinitrobenzene (DNB). The mean fluorescence lifetimes τ(av) were quantified for a range of quencher concentrations. Applying the Stern-Volmer formalism, apparent quenching rate constants k(q) were determined from the dependencies on quencher concentration of the ratio τ(0)(av)/τ(av), where τ(0)(av) is the average fluorescence lifetime of the sample without addition of an exogenous quencher. The functional domain size was gathered from the ratio k(q)'/k(q), i.e., the apparent quenching rate constants determined in aggregates (or membranes), k(q)', and in detergent-solubilised LHCII trimers, k(q), respectively. In LHCII macroaggregates, the resulting values for the domain size were 15-30 LHCII trimers. In native thylakoid membranes the domain size was equivalent to 12-24 LHCII trimers, corresponding to 500-1000 chlorophylls. Virtually the same results were obtained when membranes were suspended in buffers promoting either membrane stacking or destacking. These domain sizes are orders of magnitude smaller than the number of physically connected pigment-protein complexes. Therefore our results imply that the physical size of an antenna system beyond the numbers of a functional domain size has little or no effect on improving the light-harvesting efficiency.  相似文献   

3.
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.  相似文献   

4.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 degrees C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing "activity gels". Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being "self-digested", also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 degrees C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg(2+), and inhibited by Zn(2+), Cd(2+), EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing "activity gels" or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

5.
The xanthophyll composition of the light-harvesting chlorophyll a/b proteins of photosystem II (LHCII) has been determined for spinach (Spinacia oleracea L.) leaves after dark adaptation and following illumination under conditions optimized for conversion of violaxanthin into zeaxanthin. Each of the four LHCII components was found to have a unique xanthophyll composition. The major carotenoid was lutein, comprising 60% of carotenoid in the bulk LHCIIb and 35 to 50% in the minor LHCII components LHCIIa, LHCIIc, and LHCIId. The percent of carotenoid found in the xanthophyll cycle pigments was approximately 10 to 15% in LHCIIb and 30 to 40% in LHCIIa, LHCIIc, and LHCIId. The xanthophyll cycle was active for the pigments bound to all of the LHCII components. The extent of deepoxidation for complexes prepared from light-treated leaves was 27, 65, 69, and 43% for LHCIIa, -b, -c, and -d, respectively. These levels of conversion of violaxanthin to zeaxanthin were found in LHCII prepared by three different isolation procedures. It was estimated that approximately 50% of the zeaxanthin associated with photosystem II is in LHCIIb and 30% is associated with the minor LHCII components.  相似文献   

6.
Lenka Lípová  Josef Komenda 《BBA》2010,1797(1):63-70
Gradual heating of green leaves up to non-physiological temperatures is often used to estimate thermal stability of photosynthetic apparatus. However, a complete sequence of heat-induced disassembly and denaturation of chlorophyll-containing protein complexes (CPCs) has not been reported yet. In this work, we heated (1 °C·min− 1) barley leaves to temperatures selected according to the changes in the chlorophyll fluorescence temperature curve (FTC) and we analyzed CPC stability by two-dimensional native Deriphat/SDS-PAGE. The first distinct change in both structure and function of photosystem II (PSII) appeared at 40-50 °C. PSII core (CCII) dimers began to dissociate monomers, which was accompanied by a decrease in PSII photochemistry and reflected in FTC as the first fluorescence increase. Further changes in CPCs appeared at 57-60 °C, when FTC increases to its second maximum. Photosystem I (PSI) cores (CCI) partially dissociated from light-harvesting complexes of PSI (LHCI) and formed aggregates. The rest of CCI-LHCI complexes, as well as the CCI aggregates, degraded to the PSI-A/B heterodimer in leaves heated to 70 °C. Heating to these temperatures led to a complete degradation of CCII components and corresponding loss of PSII photochemistry. Trimeric light-harvesting complexes of PSII (LHCII) markedly dissociated to monomers and denatured, as evidenced by a release of large amount of free chlorophylls. Between 70 and 80 °C, a complete degradation of LHCII occurred, leaving the PSI-A/B heterodimer as the only detectable CPC in the membrane. This most thermostable CPC disappeared after heating to 90 °C, which corresponded to a loss of PSI photochemistry.  相似文献   

7.
The main chlorophyll a/b light-harvesting complex of photosystem II, LHCIIb, has earlier been shown to be capable of undergoing light-induced reversible structural changes and chlorophyll a fluorescence quenching in a way resembling those observed in granal thylakoids when exposed to excess light [Barzda, V., et al. (1996) Biochemistry 35, 8981-8985]. The nature and mechanism of this unexpected structural flexibility has not been elucidated. In this work, by using density gradient centrifugation and nondenaturing green gel electrophoresis, as well as absorbance and circular dichroic spectroscopy, we show that light induces a significant degree of monomerization, which is in contrast with the preferentially trimeric organization of the isolated complexes in the dark. Monomerization is accompanied by a reversible release of Mg ions, most likely from the outer loop of the complexes. These data, as well as the built-in thermal and light instability of the trimeric organization, are explained in terms of a simple theoretical model of thermo-optic mechanism, effect of fast thermal transients (local T-jumps) due to dissipated photon energies in the vicinity of the cation binding sites, which lead to thermally assisted elementary structural transitions. Disruption of trimers to monomers by excess light is not confined to isolated trimers and lamellar aggregates of LHCII but occurs in photosystem II-enriched grana membranes, intact thylakoid membranes, and whole plants. As indicated by differences in the quenching capability of trimers and monomers, the appearance of monomers could facilitate the nonphotochemical quenching of the singlet excited state of chlorophyll a. The light-induced formation of monomers may also be important in regulated proteolytic degradation of the complexes. Structural changes driven by thermo-optic mechanisms may therefore provide plants with a novel mechanism for regulation of light harvesting in excess light.  相似文献   

8.
Oh MH  Moon YH  Lee CH 《Plant & cell physiology》2003,44(12):1368-1377
Leaf senescence in a stay-green mutant of Arabidopsis thaliana, ore10, was investigated during dark-incubation of its detached leaves. During this dark-induced senescence (DIS), Chl loss was delayed in ore10 mutants, as compared with wild type, but the rate of decline in the photochemical efficiency of PSII was not delayed in mutant leaves. After 2 d of DIS, native green gel electrophoresis of ore 10 leaf proteins resulted in a significant amount of pigment remaining as aggregates on top of the stacking gel. In addition, the accumulation of aggregates coincided with the emergence of a new band near 700 nm (F(699)) in the 77 K fluorescence emission spectrum of the aggregates. At 4 d, F(699) became a major band, both in the isolated aggregates and in intact leaves. Prolonged treatment with detergents revealed that light-harvesting complex II (LHCII) remaining after 2 d was highly stable, and the accumulation of aggregates coincided with the appearance of truncated LHCII in senescing ore10 leaves. These results suggest that increased LHCII stability is due to the formation of aggregates of trimmed LHCII. Thus, the LHCII protein degradation step that follows proteolysis of its terminal peptides is a possible lesion site of the ore10 mutant.  相似文献   

9.
The non-bilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant type of lipid in the thylakoid membrane and plays an important role in regulating the structure and function of photosynthetic membrane proteins. In this study, we have reconstituted the isolated major light-harvesting complexes of photosystem II (PSII) (LHCIIb) and a preparation consisting of PSII core complexes and minor LHCII of PSII (PSIICC) into liposomes that consisted of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), with or without MGDG. Transmission electron microscopy and freeze-fracture studies showed unilamellar proteoliposomes, and demonstrated that most of the MGDG is incorporated into bilayer structures. The impact of MGDG on the functional interaction between LHCIIb and PSIICC was investigated by low temperature (77 K) fluorescence emission spectra and the photochemical activity of PSII. The additional incorporation of LHCIIb into liposomes containing PSIICC markedly increased oxygen evolution of PSIICC. Excitation at 480 nm of chlorophyll (Chl) b in LHCIIb stimulated a characteristic fluorescence emission of the Chl a in PSII (684.2 nm), rather than that of the Chl a in LHCIIb (680 nm) in the LHCIIb–PSIICC proteoliposomes, which indicated that the energy was transferred from LHCIIb to PSIICC in liposome membranes. Increasing the percentage of MGDG in the PSIICC–LHCIIb proteoliposomes enhanced the photochemical activity of PSII, due to a more efficient energy transfer from LHCIIb to PSIICC and, thus, an enlarged antenna cross section of PSII.  相似文献   

10.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

11.
Havaux M  Tardy F 《Plant physiology》1997,113(3):913-923
The chlorophyll-b-less chlorina-f2 barley mutant is deficient in the major as well as some minor light-harvesting chlorophyll-protein complexes of photosystem II (LHCII). Although the LHCII deficiency had relatively minor repercussions on the leaf photosynthetic performances, the responses of photosystem II (PSII) to elevated temperatures and to bright light were markedly modified. The chlorina-f2 mutation noticeably reduced the thermostability of PSII, with thermal denaturation of PSII starting at about 35[deg]C and 38.5[deg]C in chlorina-f2 and in the wild type, respectively. The increased susceptibility of PSII to heat stress in chlorina-f2 leaves was due to the weakness of its electron donor side, with moderate heat stress causing detachment of the 33-kD extrinsic PSII protein from the oxygen-evolving complex. Prolonged dark adaptation of chlorina-f2 leaves was also observed to inhibit the PSII donor side. However, weak illumination slowly reversed the dark-induced inhibition of PSII in chlorina-f2 and cancelled the difference in PSII thermostability observed between chlorina-f2 and wild-type leaves. The mutant was more sensitive to photoinhibition than the wild type, with strong light stress impairing the PSII donor side in chlorina-f2 but not in the wild type. This difference was not observed in anaerobiosis or in the presence of 3-(3,4-dichlorophenyl)- 1,1-dimethylurea, diuron. The acceptor side of PSII was only slightly affected by the mutation and/or the aforementioned stress conditions. Taken together, our results indicate that LHCII stabilize the PSII complexes and maintain the water-oxidizing system in a functional state under varying environmental conditions.  相似文献   

12.
Changes in chloroplast structure and rearrangement of chlorophyll-protein (CP) complexes were investigated in detached leaves of bean (Phaseolus vulgaris L. cv. Eureka), a chilling-sensitive plant, during 5-day dark-chilling at 1 degrees C and subsequent 3-h photoactivation under white light (200 mumol photons m(-2) s(-1)) at 22 degrees C. Although, no change in chlorophyll (Chl) content and Chl a/b ratio in all samples was observed, overall fluorescence intensity of fluorescence emission and excitation spectra of thylakoid membranes isolated from dark-chilled leaves decreased to about 50%, and remained after photoactivation at 70% of that of the control sample. Concomitantly, the ratio between fluorescence intensities of PSI and PSII (F736/F681) at 120 K increased 1.5-fold upon chilling, and was fully reversed after photoactivation. Moreover, chilling stress seems to induce a decrease of the relative contribution of LHCII fluorescence to the thylakoid emission spectra at 120 K, and an increase of that from LHCI and PSI, correlated with a decrease of stability of LHCI-PSI and LHCII trimers, shown by mild-denaturing electrophoresis. These effects were reversed to a large extent after photoactivation, with the exception of LHCII, which remained partly in the aggregated form. In view of these data, it is likely that dark-chilling stress induces partial disassembly of CP complexes, not completely restorable upon photoactivation. These data are further supported by confocal laser scanning fluorescence microscopy, which showed that regular grana arrangement observed in chloroplasts isolated from control leaves was destroyed by dark-chilling stress, and was partially reconstructed after photoactivation. In line with this, Chl a fluorescence spectra of leaf discs demonstrated that dark-chilling caused a decrease of the quantum yield PSII photochemistry (F(v)/F(m)) by almost 40% in 5 days. Complete restoration of the photochemical activity of PSII required 9 h post-chilling photoactivation, while only 3 h were needed to reconstruct thylakoid membrane organization and chloroplast structure. The latter demonstrated that the long-term dark-chilled bean leaves started to suffer from photoinhibition after transfer to moderate irradiance and temperature conditions, delaying the recovery of PSII photochemistry, independently of photo-induced reconstruction of PSII complexes.  相似文献   

13.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in the membrane significantly affected the trimer dissociation temperature ranging from 70 degrees C at an LHCIIb concentration comparable to or higher than the one in thylakoid grana, to 65 degrees C at the density estimated in stromal lamellae. Omitting one thylakoid lipid from the liposomes had virtually no effect on the thermal trimer stability in most cases except when digalactosyl diacylglycerol (DGDG) was omitted which caused a drop in the apparent dissociation temperature by 2 degrees C. In liposomes containing only one lipid species, DGDG and, even more so, monogalactosyl diacylglycerol (MGDG) increased the thermal stability of LHCIIb trimers whereas phosphatidyl diacylglycerol (PG) significantly decreased it. The lateral pressure exerted by the non-bilayer lipid MGDG did not significantly influence LHCII trimer stability.  相似文献   

14.
Gáspár L  Sárvári E  Morales F  Szigeti Z 《Planta》2006,223(5):1047-1057
The cause of the strong non-photochemical fluorescence quenching was examined in maize (Zea mays L.) plants that were treated with lincomycin during the 72 h period of greening. They were deficient in core complexes but seemed to contain the full complement of antennae. The following results were obtained: (1) High F o could not be attributed to the dark reduction of Q A but to the presence of a high amount of not properly organized antenna complexes due to the inhibited synthesis of reaction centres. (2) On illumination fluorescence intensity dropped considerably below F o within 20 s, and reached a steady state still below F o . (3) Slowly relaxing part of non-photochemical quenching was significantly higher than in control plants. (4) De-epoxidation state was constant, and corresponded to the maximal value of the control. (5) Free Lhca1/4 dimers could be detected in all submembrane fractions, including the grana, obtained by digitonin fractionation. (6) Increase in the 679 and 700 nm fluorescence emissions could be attributed to the monomerisation of part of LHCII and to the presence of free Lhca2 or LHCII aggregates, respectively. (7) LHCII or PSII+LHCII and Lhca1/4 interaction may contribute to the increase of long-wavelength fluorescence in the granal fraction. We assume that the elevated fluorescence quenching of monomeric LHCII as well as the interaction between LHCII or PSII+LHCII and Lhca1/4 can be considered as an explanation for the extensive non-photochemical fluorescence quenching in lincomycin treated plants. The permanent presence of zeaxanthin may have contributed to the fast formation of quenching.  相似文献   

15.
Photosystem II (PSII) is a multisubunit chlorophyll–protein complex that drives electron transfer from water to plastoquinone using energy derived from light. In green plants, the native form of PSII is surrounded by the light-harvesting complex (LHCII complex) and thus it is called the PSII–LHCII supercomplex. Over the past several years, understanding of the structure, function, and assembly of PSII and LHCII complexes has increased considerably. The unicellular green alga Chlamydomonas reinhardtii has been an excellent model organism to study PSII and LHCII complexes, because this organism grows heterotrophically and photoautotrophically and it is amenable to biochemical, genetic, molecular biological and recombinant DNA methodology. Here, the genes encoding and regulating components of the C. reinhardtii PSII–LHCII supercomplex have been thoroughly catalogued: they include 15 chloroplast and 20 nuclear structural genes as well as 13 nuclear genes coding for regulatory factors. This review discusses these molecular genetic data and presents an overview of the structure, function and assembly of PSII and LHCII complexes.  相似文献   

16.
The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained by a short treatment of thylakoid membranes with the mild detergent n-dodecyl-alpha, d-maltoside and are thought to reflect the grana membranes in a native state. The membranes frequently show crystalline macrodomains in which PSII is organized in rows spaced by either 26.3 nm (large-spaced crystals) or 23 nm (small-spaced crystals). The small-spaced crystals are less common but better ordered. Image analysis of the crystals by an aperiodic approach revealed the precise positions of the core parts of PSII in the lattices, as well as features of the peripheral light-harvesting antenna. Together, they indicate that the so-called C(2)S(2) and C(2)S(2)M supercomplexes form the basic motifs of the small-spaced and large-spaced crystals, respectively. An analysis of a pair of membranes with a well-ordered large-spaced crystal reveals that many PSII complexes in one layer face only light-harvesting complexes (LHCII) in the other layer. The implications of this type of organization for the efficient transfer of excitation energy from LHCII to PSII and for the stacking of grana membranes are discussed.  相似文献   

17.
Chlamydomonas raudensis UWO 241 and SAG 49.72 represent the psychrophilic and mesophilic strains of this green algal species. This novel discovery was exploited to assess the role of psychrophily in photoacclimation to growth temperature and growth irradiance. At their optimal growth temperatures of 8 degrees C and 28 degrees C respectively, UWO 241 and SAG 49.72 maintained comparable photostasis, that is energy balance, as measured by PSII excitation pressure. Although UWO 241 exhibited higher excitation pressure, measured as 1-qL, at all growth light intensities, the relative changes in 1-qL were similar to that of SAG 49.72 in response to growth light. In response to suboptimal temperatures and increased growth irradiance, SAG 49.72 favoured energy partitioning of excess excitation energy through inducible, down regulatory processes (Phi(NPQ)) associated with the xanthophyll cycle and antenna quenching, while UWO 241 favoured xanthophyll cycle-independent energy partitioning through constitutive processes involved in energy dissipation (Phi(NO)). In contrast to SAG 49.72, an elevation in growth temperature induced an increase in PSI/PSII stoichiometry in UWO 241. Furthermore, SAG 49.72 showed typical threonine-phosphorylation of LHCII, whereas UWO 241 exhibited phosphorylation of polypeptides of comparable molecular mass to PSI reaction centres but the absence of LHCII phosphorylation. Thus, although both strains maintain an energy balance irrespective of their differences in optimal growth temperatures, the mechanisms used to maintain photostasis were distinct. We conclude that psychrophily in C. raudensis is complex and appears to involve differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation.  相似文献   

18.
Diurnal fluctuations were observed in the content and some structural and functional properties of the light-harvesting chlorophyll (Chl) a/b pigment-protein complex of photosystem II (LHCII) in young developing wheat (Triticum aestivum) leaves grown under 16 hours light/8 hours dark illumination regime. The fluctuations could be correlated with the diurnal oscillation in the level of mRNA for LHCII. The most pronounced changes occurred in the basal segments of the leaves. They were weaker or hardly discernible in the middle and tip segments. As judged from the diurnal variations of the Chl-a/Chl-b molar ratio, the LHCII content of the thylakoid membranes peaked around 2 pm. This can be accounted for by the cumulative effect of the elevated level of mRNA in the morning and early afternoon. In the basal segment, the extent of the fluctuation in the LHCII content was approximately 25%, as determined from gel electrophoresis (“green gels”). The amplitude of the principal bands of the circular dichroism (CD) spectra of isolated chloroplasts paralleled the changes in the LHCII content. Our circular dichroism data suggest that the newly synthesized LHCII complexes are incorporated into the existing helically organized macrodomains of the pigment-protein complexes or themselves form such macrodomains in the thylakoid membranes. Chl-a fluorescence induction kinetics also showed diurnal variations especially in the basal segments of the leaves. This most likely indicates fluctuations in the ability of membranes to undergo “state transitions.” These observations suggest a physiological role of diurnal rhythm of mRNA for LHCII in young developing leaves.  相似文献   

19.
The distribution of xanthophyll cycle pigments (violaxanthin plus antheraxanthin plus zeaxanthin [VAZ]) among photosynthetic pigment-protein complexes was examined in Vinca major before, during, and subsequent to a photoinhibitory treatment at low temperature. Four pigment-protein complexes were isolated: the core of photosystem (PS) II, the major light-harvesting complex (LHC) protein of PSII (LHCII), the minor light-harvesting proteins (CPs) of PSII (CP29, CP26, and CP24), and PSI with its LHC proteins (PSI-LHCI). In isolated thylakoids 80% of VAZ was bound to protein independently of the de-epoxidation state and was found in all complexes. Plants grown outside in natural sunlight had higher levels of VAZ (expressed per chlorophyll), compared with plants grown in low light in the laboratory, and the additional VAZ was mainly bound to the major LHCII complex, apparently in an acid-labile site. The extent of de-epoxidation of VAZ in high light and the rate of reconversion of Z plus A to V following 2.5 h of recovery were greatest in the free-pigment fraction and varied among the pigment-protein complexes. Photoinhibition caused increases in VAZ, particularly in low-light-acclimated leaves. The data suggest that the photoinhibitory treatment caused an enrichment in VAZ bound to the minor CPs caused by de novo synthesis of the pigments and/or a redistribution of VAZ from the major LHCII complex.  相似文献   

20.
Banet G  Pick U  Zamir A 《Planta》2000,210(6):947-955
 Like higher plants, unicellular green algae of the genus Dunaliella respond to light stress by enhanced de-epoxidation of violaxanthin and accumulation of Cbr, a protein homologous to early light-inducible proteins (Elips) in plants. Earlier studies indicated that Cbr was associated with the light-harvesting complex of photosystem II (LHCII) and suggested it acted as a zeaxanthin-binding protein and fulfilled a photo-protective function (Levy et al. 1993, J. Biol. Chem. 268: 20892–20896). To characterize the protein-pigment subcomplexes containing Cbr in greater detail than attained so far, thylakoid membranes from Dunaliella salina grown in high light or normal light were solubilized with dodecyl maltoside and fractionated by isoelectric-focusing. Analysis of the resolved LHCII subcomplexes indicated preferred associations among the four LHCIIb polypeptides and between them and Cbr: subcomplexes including Cbr contained one or two of the more acidic of the four LHCIIb polypeptides as well as large amounts of lutein and zeaxanthin relative to chlorophyll a/b. After sucrose gradient centrifugation, Cbr free of LHCIIb polypeptides was detected together with released pigments; this Cbr possibly originated in subcomplexes dissociated in the course of the analysis. These results agree with the conclusion that Cbr is part of the network of LHCIIb protein-pigment complexes and suggest that the role played by Cbr involves the organization and/or stabilization of assemblies highly enriched in zeaxanthin and lutein. Such assemblies may function to protect PSII from photodamage due to overexcitation. Received: 6 August 1999 / Accepted: 23 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号