首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DAVID H. REED 《Molecular ecology》2009,18(22):4521-4522
The extent to which genetic diversity is lost from inbred populations is important for conservation biology, evolutionary ecology, and plant and animal breeding. This importance stems from the fact that the amount of genetic diversity a population has is expected to correlate with evolutionary potential. A population's ability to avert extinction during rapidly changing environmental conditions, or the magnitude of response to selection on a trait, depend on the ability of the genome to maintain potentially adaptive genetic variation in the face of random genetic drift. Although a few previous studies have demonstrated that the rate of inbreeding affects the amount of genetic diversity maintained, the elegant work of Demontis et al. , in this issue, clearly demonstrates that slow inbreeding maintains more genetic diversity than fast inbreeding and that the primary mechanism could be balancing selection. In their study, populations that took 19 generations, rather than one generation, to reach the same level of inbreeding maintained 10% higher levels of allelic richness and 25% higher levels of heterozygosity. The use of specifically chosen molecular markers not expected to be neutral makes this study especially noteworthy, as the study provides evidence concerning the mechanisms underlying the maintenance of genetic diversity in the face of inbreeding.  相似文献   

2.
Theoretical results have shown that a pattern of local extinction and recolonization can have significant consequences for the genetic structure of subdivided populations; consequences that are relevant to issues in both evolutionary and conservation biology. The nature of those consequences depends largely on the mode of colony formation. Extinction and recolonization can either increase or decrease the genetic differentiation of local populations and can lead to a loss of the genetic diversity stored in an array of populations. Recent ecological studies of two insect species have revealed population structures resembling, in part, that considered in the models. They serve to illustrate the potential complexity of the processes of extinction and recolonizatiion in nature.  相似文献   

3.
Ecological consequences of genetic diversity   总被引:4,自引:0,他引:4  
Understanding the ecological consequences of biodiversity is a fundamental challenge. Research on a key component of biodiversity, genetic diversity, has traditionally focused on its importance in evolutionary processes, but classical studies in evolutionary biology, agronomy and conservation biology indicate that genetic diversity might also have important ecological effects. Our review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients. Thus, genetic diversity can have important ecological consequences at the population, community and ecosystem levels, and in some cases the effects are comparable in magnitude to the effects of species diversity. However, it is not clear how widely these results apply in nature, as studies to date have been biased towards manipulations of plant clonal diversity, and little is known about the relative importance of genetic diversity vs. other factors that influence ecological processes of interest. Future studies should focus not only on documenting the presence of genetic diversity effects but also on identifying underlying mechanisms and predicting when such effects are likely to occur in nature.  相似文献   

4.
Conservation of genetic diversity, one of the three main forms of biodiversity, is a fundamental concern in conservation biology as it provides the raw material for evolutionary change and thus the potential to adapt to changing environments. By means of meta‐analyses, we tested the generality of the hypotheses that habitat fragmentation affects genetic diversity of plant populations and that certain life history and ecological traits of plants can determine differential susceptibility to genetic erosion in fragmented habitats. Additionally, we assessed whether certain methodological approaches used by authors influence the ability to detect fragmentation effects on plant genetic diversity. We found overall large and negative effects of fragmentation on genetic diversity and outcrossing rates but no effects on inbreeding coefficients. Significant increases in inbreeding coefficient in fragmented habitats were only observed in studies analyzing progenies. The mating system and the rarity status of plants explained the highest proportion of variation in the effect sizes among species. The age of the fragment was also decisive in explaining variability among effect sizes: the larger the number of generations elapsed in fragmentation conditions, the larger the negative magnitude of effect sizes on heterozygosity. Our results also suggest that fragmentation is shifting mating patterns towards increased selfing. We conclude that current conservation efforts in fragmented habitats should be focused on common or recently rare species and mainly outcrossing species and outline important issues that need to be addressed in future research on this area.  相似文献   

5.
Contaminant-induced alterations in genetic diversity or allele/genotype frequencies can occur via genetic bottlenecks, selection, or increased mutation rate, and may affect population growth, sustainability, and adaptability. Determination of causality of genetic effects requires demonstration of some or all of the following criteria: (1) Strength of association: use of multiple reference and contaminated populations, and demonstration of effects that cannot otherwise be explained by evolutionary theory; (2) Consistency of association: effects corroborated by other studies, in other species, or with multiple genetic markers; (3) Specificity of association: concordance of genetic effects with exposure/effect bioindicators, genotypedependant fitness and biomarkers, and consideration of confounding factors; (4) Temporality of effects: use of phylogenetics and analysis of genetic diversity using different methodologies to differentiate historical vs. recent events; (5) Biological gradients: sampling sites that are known to have differing levels of contamination; (6) Experimental evidence: exposure of small populations to contaminants in laboratories, mesocosms, or in situ cages, or measurement of genotype-dependant biomarkers; (7) Biological plausibility: existence of contaminants at levels great enough to affect fitness, recruitment, or mutation rates, or a demonstrated mechanism for selection. Application of these criteria to population genetic studies is illustrated by case studies involving RAPD analysis of mosquitofish populations.  相似文献   

6.
Is a key theory of evolutionary and conservation biology—that loss of genetic diversity can be predicted from population size—on shaky ground? In the face of increasing human‐induced species depletion and habitat fragmentation, this question and the study of genetic diversity in small populations are paramount to understanding the limits of species’ responses to environmental change and to providing remedies to endangered species conservation. Few empirical studies have investigated to what degree some small populations might be buffered against losses of genetic diversity. Even fewer studies have experimentally tested the potential underlying mechanisms. The study of Schou, Loeschcke, Bechsgaard, Schlotterer, and Kristensen ( 2017 ) in this issue of Molecular Ecology is elegant in combining classic common garden experimentation with population genomics on an iconic experimental model species (Drosophila melanogaster). The authors reveal a slower rate of loss of genetic diversity in small populations under varying thermal regimes than theoretically expected and hence an unexpected retention of genetic diversity. They are further able to hone in on a plausible mechanism: associative overdominance, wherein homozygosity of deleterious recessive alleles is especially disfavoured in genomic regions of low recombination. These results contribute to a budding literature on the varying mechanisms underlying genetic diversity in small populations and encourage further such research towards the effective management and conservation of fragmented or endangered populations.  相似文献   

7.
Most of the major genetic concerns in conservation biology, including inbreeding depression, loss of evolutionary potential, genetic adaptation to captivity and outbreeding depression, involve quantitative genetics. Small population size leads to inbreeding and loss of genetic diversity and so increases extinction risk. Captive populations of endangered species are managed to maximize the retention of genetic diversity by minimizing kinship, with subsidiary efforts to minimize inbreeding. There is growing evidence that genetic adaptation to captivity is a major issue in the genetic management of captive populations of endangered species as it reduces reproductive fitness when captive populations are reintroduced into the wild. This problem is not currently addressed, but it can be alleviated by deliberately fragmenting captive populations, with occasional exchange of immigrants to avoid excessive inbreeding. The extent and importance of outbreeding depression is a matter of controversy. Currently, an extremely cautious approach is taken to mixing populations. However, this cannot continue if fragmented populations are to be adequately managed to minimize extinctions. Most genetic management recommendations for endangered species arise directly, or indirectly, from quantitative genetic considerations.  相似文献   

8.
The phylogenetic diversity of extant lemurs represents one of the most important but least studied aspects of the conservation biology of primates. The phylogenetic diversity of a species is inversely proportional to the relative number and closeness of its phylogenetic relatives. Phylogenetic diversity can then be used to determine conservation priorities for specific biogeographic regions. Although Malagasy strepsirhines represent the highest phylogenetic diversity among primates at the global level, there are few phylogenetic data on species-specific and regional conservation plans for lemurs in Madagascar. Therefore, in this paper the following questions are addressed for extant lemurs: 1) how does the measure of taxonomic uniqueness used by Mittermeier et al. (1992 Lemurs of Madagascar; Gland, Switzerland: IUCN) equate with an index of phylogenetic diversity, 2) what are the regional conservation priorities based on analyses of phylogenetic diversity in extant lemurs, and 3) what conservation recommendations can be made based on analyses of phylogenetic diversity in lemurs? Taxonomic endemicity standardized weight (TESW) indices of phylogenetic diversity were used to determine the evolutionary component of biodiversity and to prioritize regions for conserving lemur taxa. TESW refers to the standardization of phylogenetic diversity indices for widespread taxa and endemicity of species. The phylogenetic data came from recent genetic studies of Malagasy strepsirhines at the species level. Lemur species were assigned as being either present or absent in six biogeographic regions. TESW indices were combined with data on lemur complementarity and protected areas to assign conservation priorities at the regional level. Although there were no overall differences between taxonomic ranks and phylogenetic rankings, there were significant differences for the top-ranked taxa. The phylogenetic component of lemur diversity is greatest for Daubentonia madagascariensis, Allocebus trichotis, Lepilemur septentrionalis, Indri indri, and Mirza coquereli. Regional conservation priorities are highest for lemurs that range into northeast humid forests and western dry forests. Expansion of existing protected areas in these regions may provide the most rapid method for preserving lemurs. In the long term, new protected areas must be created because there are lemur species that: 1) are not found in existing protected areas, 2) exist only in one or two protected areas, and 3) are still being discovered outside the current network of protected areas. Data on the population dynamics and feeding ecology of phylogenetically important species are needed to ensure that protected areas adequately conserve lemur populations in Madagascar.  相似文献   

9.
The diversity of functional genes and the related processes are important issues for conservation biology. This is especially relevant for populations that have suffered from demographic reduction as a consequence of the processes of postglacial colonization. In this perspective, the aims of the present study are (1) to quantify the genetic diversity of functional genes and (2) to disentangle the long- and short-term effects of natural selection that shapes genetic diversity from those of drift, mutation, and allopatric fragmentation. This research was conducted using an extensive genetic polymorphism analysis of populations of longnose dace (Rhinichthys cataractae) living over an area once covered by Pleistocene glaciations. The sequence and diversity of one exon of three genes (MHC IIβ, growth hormone, and trypsin) were jointly analyzed with non-coding nuclear loci from 27 populations; these populations were sampled over four major basins of northeastern North America. The survey revealed a surprisingly low allelic richness, especially for the MHC gene, considering the number of individuals and populations sampled. The results suggest that there is a complex mixture of different evolutionary processes shaping the level of polymorphism among longnose dace. While our study underlines the importance of the short-term effects of neutral processes and the major impact of post-glacial colonization on gene diversity, locally dependent balancing selection was detected on MHC. From this perspective, our results support an understanding of the importance of drift on functional gene diversity but also highlight the transient effects of natural selection on allelic composition, even in populations that show drastic reduction of genetic diversity.  相似文献   

10.
遗传多样性与濒危植物保护生物学研究进展   总被引:40,自引:3,他引:37  
尽管对于濒危物种的遗传学人们已经进行了大量研究,但是种群遗传学在植物保护中的实际地位尚存在很大争议。濒危物种的遗传多样性可能会由于遗传漂变、近交的作用而丧失;但这种丧失更可能是濒危的结果而不是濒危的起因。遗传多样性水平与物种生存力之间没有任何必然的联系。但植物种群遗传结构如果由于自交不亲和等位基因的丧失和与亲缘种杂交造成的遗传同化而发生改变,那么它对物种生存力会产生明显负作用。  相似文献   

11.
Island biogeography and the reproductive ecology of great tits Parus major   总被引:2,自引:0,他引:2  
Island biogeography theory has contributed greatly to both theoretical and applied studies of conservation biology (e.g., design of nature reserves, minimum viable population sizes, extinction risk) and community composition. However, little theoretical and empirical work has addressed how island isolation and size affect reproductive ecology. We investigated the reproductive ecology of great tits (Parus major) on one offshore and one nearshore island, as well as on the Danish mainland. Tits breeding on the offshore island bred later, laid smaller clutches, and laid larger eggs than those on the nearshore island and mainland. In addition, the level of ectoparasite infestation in nests was highest on the offshore island, intermediate on the nearshore island, and lowest on the mainland. These insular effects may occur due to lower food abundance on islands, to density-dependent effects, or to effects related to low genetic diversity within island populations. Whatever the cause, the results emphasize that future studies of forest fragmentation/population isolation should consider not only gross measures of reproductive success, but also fine-scale measures such as clutch size, timing of breeding, and parasite prevalence. Received: 10 November 1997 / Accepted: 9 March 1998  相似文献   

12.
Theory predicts that genetic diversity and genetic differentiation may strongly vary among populations of the same species depending on population turnover and local population sizes. Yet, despite the importance of these predictions for evolutionary and conservation issues, empirical studies comparing high‐turnover and low‐turnover populations of the same species are scarce. In this study, we used Daphnia magna, a freshwater crustacean, as a model organism for such a comparison. In the southern/central part of its range, D. magna inhabits medium‐sized, stable ponds, whereas in the north, it occurs in small rock pools with strong population turnover. We found that these northern populations have a significantly lower genetic diversity and higher genetic differentiation compared to the southern/central populations. Total genetic diversity across populations was only about half and average within‐population diversity only about a third of that in southern/central populations. Moreover, an average southern population contains more genetic diversity than the whole metapopulation system in the north. We based our analyses both on silent sites and microsatellites. The similarity of our results despite the contrasting mutation rates of these markers suggests that the differences are caused by contemporary rather than by historical processes. Our findings show that variation in population turnover and population size may have a major impact on the genetic diversity and differentiation of populations, and hence may lead to differences in evolutionary processes like local adaptation, hybrid vigour and breeding system evolution in different parts of a species range.  相似文献   

13.
Noel F  Machon N  Porcher E 《Annals of botany》2007,99(6):1203-1212
BACKGROUND AND AIMS: Although conservation biology has long focused on population dynamics and genetics, phenotypic plasticity is likely to play a significant role in population viability. Here, an investigation is made into the relative contribution of genetic diversity and phenotypic plasticity to the phenotypic variation in natural populations of Ranunculus nodiflorus, a rare annual plant inhabiting temporary puddles in the Fontainebleau forest (Paris region, France) and exhibiting metapopulation dynamics. METHODS: The genetic diversity and phenotypic plasticity of quantitative traits (morphological and fitness components) were measured in five populations, using a combination of field measurements, common garden experiments and genotyping at microsatellite loci. KEY RESULTS: It is shown that populations exhibit almost undetectable genetic diversity at molecular markers, and that the variation in quantitative traits observed among populations is due to a high level of phenotypic plasticity. Despite the lack of genetic diversity, the natural population of R. nodiflorus exhibits large population sizes and does not appear threatened by extinction; this may be attributable to large phenotypic plasticity, enabling the production of numerous seeds under a wide range of environmental conditions. CONCLUSIONS: Efficient conservation of the populations can only be based on habitat management, to favour the maintenance of microenvironmental variation and the resulting strong phenotypic plasticity. In contrast, classical actions aiming to improve genetic diversity are useless in the present case.  相似文献   

14.
Populations that are connected by immigrants play an important role in evolutionary and conservation biology, yet we have little direct evidence of how such metapopulations change genetically over evolutionary time. We compared historic (1894–1906) to modern (1988–2006) genetic variation in 11 populations of warbler finches at 14 microsatellite loci. Although several lines of evidence suggest that Darwin's finches may be in decline, we found that the genetic diversity of warbler finches has not generally declined, and broad‐scale patterns of variation remained similar over time. Contrary to expectations, inferred population sizes have generally increased over time (6–8%) as have immigration rates (8–16%), which may reflect a recent increase in the frequency and intensity of El Niño events. Individual island populations showed significant declines (18–19%) and also substantial gains (18–20%) in allelic richness over time. Changes in genetic diversity were correlated with changes in immigration rates, but did not correspond to population size or human disturbance. These results reflect the expected stabilizing properties of whole metapopulations over time. However, the dramatic and unpredictable changes observed in individual populations during this short time interval suggests that care should be taken when monitoring individual population fragments with snapshots of genetic variation.  相似文献   

15.
偶蹄类动物的遗传多样性研究与技术比较   总被引:1,自引:0,他引:1  
曾岩  蒋志刚  韩更新 《兽类学报》2000,20(3):217-224
研究和保护遗传多样性成为野生偶蹄类动物保护生物学的重要课题。目前测定遗传多样性的技术主要有 :数量性状的遗传分析 ,蛋白电泳多样性和以DNA为遗传标记等一系列测定方法。这些方法基于不同的原理 ,其操作的难易、耗费的时间精力以及数据所能说明的问题有一定差别。因此研究偶蹄类动物遗传多样性应选择适宜的技术方法。  相似文献   

16.
保护生物学一新分支学科——保护遗传学   总被引:5,自引:0,他引:5  
研究人类对生物多样性的影响以及防止物种灭绝是保护生物学的两个主要目的。随着环境日益恶化、分子遗传学的迅速发展以及保护生物学和分子遗传学的不为民相互渗透,和产生了一全新的分支学科--保护遗传学。保护遗传学是保护生物学研究中的一个核心部分,主要研究濒危物种的遗传多样性和保护物种的进化潜力。目前保护遗传学已成为国际上的一个研究热点,但在我国才刚刚起步,为此,本文就保护,遗传学的产生和发展及其研究内容和意义作一简要介绍,以推动我国在该方面的研究。  相似文献   

17.

Aim

Insights into the biological and evolutionary traits of species, and their ability to cope with global changes, can be gained by studying genetic diversity within species. A cornerstone hypothesis in evolutionary and conservation biology suggests that genetic diversity decreases with decreasing population size, however, population size is difficult to estimate in threatened species with large distribution ranges, and evidence for this is limited to few species. To address this gap, we tested this hypothesis across multiple closely related species at a global scale using population density which is a more accessible measure.

Location

Global.

Time Period

Contemporary.

Major Taxa Studied

Wild felids in their natural habitats.

Methods

We obtained data from published estimates of population density assessed via camera trap and within-population genetic diversity generated from microsatellite markers on 18 felid species across 41 countries from 354 studies. We propose a novel method to standardize population density estimates and to spatially join data using K-means clustering. Linear mixed-effect modelling was applied to account for confounding factors such as body mass, generation length and sample size used for the genetic estimates.

Results

We found a significant positive correlation between population density and genetic diversity, particularly observed heterozygosity and allelic richness. While the confounding factors did not affect the main results, long generation length and large sample size were significantly associated with high genetic diversity. Body mass had no effect on genetic diversity, likely because large-bodied species were over-represented in our data sets.

Main Conclusions

Our study emphasizes how recent demographic processes shape neutral genetic diversity in threatened and small populations where extinction vortex is a risk. Although caution is needed when interpreting the small population density effect in our findings, our methodological framework shows promising potential to identify which populations require actions to conserve maximal genetic variation.  相似文献   

18.
Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed‐specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems.  相似文献   

19.
Genetic diversity is the raw material for evolutionary change, so a species’ capacity to maintain its genetic diversity is a major concern in conservation genetics. Although genetic diversity within a population is reduced through time by genetic drift, gene flow among populations can act to recover or add new genetic variants. The goal of this study was to infer potential connectivity among isolated-by-sea populations of the vulnerable freshwater blenny (Salaria fluviatilis) and to determine if gene flow could contribute to maintaining genetic diversity in connected populations. Four genetic clusters (one small at the North, one large at the South for both East and West coasts) were detected with different clustering methods (FLOCK, STUCTURE, UPGMA, AMOVA). The two larger genetic clusters with higher migration-rate estimates among localities had higher genetic diversity and allelic richness and lower relatedness between individuals, compared to isolated localities found in smaller clusters. Our results also suggest that sea currents may facilitate fish movements among neighbouring rivers. Overall, gene flow among isolated-by-sea but close rivers could maintain the evolutionary potential of freshwater blenny populations. This finding should be considered when elaborating a conservation program for this species.  相似文献   

20.
As anthropogenic disturbances continue to drive habitat loss and range contractions, the maintenance of evolutionary processes will increasingly require targeting measures to the population level, even for common and widespread species. Doing so requires detailed knowledge of population genetic structure, both to identify populations of conservation need and value, as well as to evaluate suitability of potential donor populations. We conducted a range-wide analysis of the genetic structure of red foxes in the contiguous western U.S., including a federally endangered distinct population segment of the Sierra Nevada subspecies, with the objectives of contextualizing field observations of relative scarcity in the Pacific mountains and increasing abundance in the cold desert basins of the Intermountain West. Using 31 autosomal microsatellites, along with mitochondrial and Y-chromosome markers, we found that populations of the Pacific mountains were isolated from one another and genetically depauperate (e.g., estimated Ne range = 3–9). In contrast, red foxes in the Intermountain regions showed relatively high connectivity and genetic diversity. Although most Intermountain red foxes carried indigenous western matrilines (78%) and patrilines (85%), the presence of nonindigenous haplotypes at lower elevations indicated admixture with fur-farm foxes and possibly expanding midcontinent populations as well. Our findings suggest that some Pacific mountain populations could likely benefit from increased connectivity (i.e., genetic rescue) but that nonnative admixture makes expanding populations in the Intermountain basins a non-ideal source. However, our results also suggest contact between Pacific mountain and Intermountain basin populations is likely to increase regardless, warranting consideration of risks and benefits of proactive measures to mitigate against unwanted effects of Intermountain gene flow.Subject terms: Conservation biology, Population genetics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号