首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A second trypsin inhibitor (DMTI-II) was purified from the seed of Dimorphandra mollis (Leguminosae-Mimosoideae) by ammonium sulfate precipitation (30–60%), gel filtration, and ion-exchange and affinity chromatography. A molecular weight of 23 kDa was estimated by gel filtration on a Superdex 75 column SDS-PAGE under reduced conditions showed that DMTI-II consisted of a single polypeptide chain, although isoelectric focusing revealed the presence of three isoforms. The dissociation constant of 1.7 × 10–9 M with bovine trypsin indicated a high affinity between the inhibitor and this enzyme. The inhibitory activity was stable over a wide pH range and in the presence of DTT. The N-terminal sequence of DMTI-II showed a high degree of homology with other Kunitz-type inhibitors.  相似文献   

2.
A trypsin-chymotrypsin inhibitor was isolated from the seeds of amaranth—a highly nutritious protein source. The purification of the inhibitor (AmI) was carried out by affinity chromatography on trypsin-Sepharose and by HPLC. AmI is a single-chain protein of 8 kD, as determined by electrophoresis on SDS-polyacrylamide gels and by gel exclusion on Sephadex G-50 column. It is stable at neutral and alkalinepH and is relatively thermostable. AmI inhibits trypsin and chymotrypsin from the digestive system of insects such asTribolium castaneum andLocusta migratoria, supporting the hypothesis that inhibitors may have evolved as defense mechanisms of seeds against insects. AmI lost its inhibitory activities when submitted to limited proteolysis with trypsin, while limited proteolysis with chymotrypsin had almost no effect. The partial amino acid sequence of 45 amino acids from the amino terminus of AmI differs significantly from the known sequences of legume-seed and cereal-grain protease inhibitor families. Differences in the chemistry at the inhibitory site(s) and in the amino acid sequence of AmI in comparison to that of other cereal and legume inhibitors suggest that AmI is a member of a new family of serine protease inhibitors. AmI was found to inhibit the anchorage-independent growth of MCF-7 breast cancer cells, suggesting that AmI may have anticarcinogenic activity.  相似文献   

3.
Five serine proteinase inhibitors (Mirabilis jalapa trypsin inhibitors, MJTI I and II and Spinacia oleracea trypsin inhibitors, SOTI I, II, and III) from the garden four-o'clock (M. jalapa) and spinach (S. oleracea) seeds were isolated. The purification procedures included affinity chromatography on immobilized methylchymotrypsin in the presence of 5M NaCl, ion exchange chromatography and/or preparative electrophoresis, and finally RP-HPLC on a C-18 column. The inhibitors, crosslinked by three disulfide bridges, are built of 35 to 37 amino-acid residues. Their primary structures differ from those of known trypsin inhibitors, but showed significant similarity to the antimicrobial peptides isolated from the seeds of M. jalapa (MJ-AMP1, MJ-AMP2), Mesembryanthemum crystallinum (AMP1), and Phytolacca americana (AMP-2 and PAFP-S) and from the hemolymph of Acrocinus longimanus (Alo-1, 2 and 3). The association equilibrium constants (K(a)) with bovine beta-trypsin for the inhibitors from M. jalapa (MJTI I and II) and S. oleracea (SOTI I-III) were found to be about 10(7)M(-1). Fully active MJTI I and SOTI I were obtained by solid-phase peptide synthesis. The disulfide bridge pattern in both inhibitors (Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6) was established after their digestion with thermolysin and proteinase K followed by the MALDI-TOF analysis.  相似文献   

4.
甘薯和花生胰蛋白酶抑制剂的初步研究   总被引:1,自引:0,他引:1  
许多植物蛋白制成品均含有抑制动物消化的蛋白酶抑制剂。目前已从某些豆类及蔬菜种子中分离出多种对胰蛋白酶具有抑制作用的活性物质。该实验以花生、甘薯等为原料,通过DEAE-Sepharose4BFF阴离子交换柱层析分离胰蛋白酶抑制剂,以N-苯甲酰-L-精氨酸乙酯(BAEE)为底物测定其对胰蛋白酶的抑制活性;将具有抑制活性的组分通过SDS-PAGE测定蛋白质相对分子质量(Mr);以聚丙烯酰胺凝胶等电聚焦电泳测定蛋白质等电点(pI)。结果显示,甘薯中至少有4种胰蛋白酶抑制剂组分,相对分子质量为20~25kD、等电点在pH5.0~6.6之间;花生中至少有三种胰蛋白酶抑制剂组分,相对分子质量为30~70kD、等电点在pH5.0~5.8之间。  相似文献   

5.
苦荞种子胰蛋白酶抑制剂的分离纯化及部分性质研究   总被引:14,自引:0,他引:14  
采用凝胶层析及离子交换层析等方法,从苦荞种子中分离出一组胰蛋白酶抑制剂(TBTI-Ⅰ、Ⅱ).对其性质研究表明:两个组分均对胰蛋白酶有较强的抑制作用,对胰凝乳蛋白酶抑制作用较弱,其中TBTI-Ⅱ的抑制作用大于TBTI-Ⅰ,两者对胃蛋白酶、木瓜蛋白酶及枯草杆菌蛋白酶均无抑制作用.用SDS-聚丙烯酰胺凝胶电泳和SephadexG-100凝胶层析分别对纯化产物进行分析得出TBTI-Ⅰ和TBTI-Ⅱ的近似分子量分别为15.0kD和18.0kD.TBTI-Ⅰ、Ⅱ都具有较高的热稳定性,在100℃处理10min后可保留86%左右的抑制活性.TBTI在酸性环境下较为稳定,在pH2.0条件下保温1h,仍保留75%的抑制活性.用Lineveaer-Burk作图法得知,该抑制剂属竞争性抑制类型,TBTI-Ⅱ的Ki值为3.59×10-7mol/L(以BAPNA为底物),对胰蛋白酶的摩尔抑制比为1∶1.4.  相似文献   

6.
Wong RC  Fong WP  Ng TB 《Peptides》2004,25(2):163-169
Five trypsin inhibitors, with N-terminal sequences demonstrating homology to each other and exhibiting a molecular weight of 5100, 4800, 4400, 4100, and 3900, respectively, were isolated from Momordica cochinchinensis seeds with a protocol involving acid extraction, ion exchange chromatography on SP-Sepharose chromatography, and RP-HPLC on a C18 column. Specific inhibitory activity against trypsin was demonstrated by the trypsin isoinhibitors with Ki values ranging from 5.3 x 10(-8) to 1.8 x 10(-6) M. None of the isoinhibitors could be cleaved by trypsin.  相似文献   

7.
A protein with trypsin inhibitory activity was purified to homogeneity from the seeds of Murraya koenigii (curry leaf tree) by ion exchange chromatography and gel filtration chromatography on HPLC. The molecular mass of the protein was determined to be 27 kDa by SDS-PAGE analysis under reducing conditions. The solubility studies at different pH conditions showed that it is completely soluble at and above pH 7.5 and slowly precipitates below this pH at a protein concentration of 1 mg/ml. The purified protein inhibited bovine pancreatic trypsin completely in a molar ratio of 1:1.1. Maximum inhibition was observed at pH 8.0. Kinetic studies showed that Murraya koenigii trypsin inhibitor is a competitive inhibitor with an equilibrium dissociation constant of 7 × 10? 9 M. The N-terminal sequence of the first 15 amino acids showed no similarity with any of the known trypsin inhibitors, however, a short sequence search showed significant homology to a Kunitz-type chymotrypsin inhibitor from Erythrina variegata.  相似文献   

8.
Protease inhibitors present in seeds of legumes possess strong inhibitory activity against trypsin and confer resistance against pests. In the present investigation, trypsin inhibitor activity was found in the seed flour extracts of all the eight selected varieties of mungbean under study which was further confirmed by dot blot analysis. All the varieties showed inhibitory activity in vitro against the gut protease of Helicoverpa armigera (HGP). Trypsin inhibitor was purified from mungbean seeds to near homogeneity with 58.1-fold and 22.8% recovery using heat denaturation, NH4(SO4)2 fractionation, ion-exchange chromatography on DEAE-Sephadex A-25 and gel filtration through Sephadex G-75. The molecular mass of the inhibitor was 47 kDa as determined by gel filtration and SDS-PAGE. The inhibitor retained 90% or more activity between pH 4 and 10, however, it was nearly inactive at extreme pH values. The inhibitor was stable up to 80°C but thereafter, the activity decreased gradually retaining nearly 30% of activity when heated at 100°C for 20 min. The inhibitor activity was undetectable at 121°C. Insect bioassay experiment using purified mungbean trypsin inhibitor showed a marked decline in survival (%) of larvae with increase in inhibitor concentration. The larval growth was also extended by the trypsin inhibitor. This study signifies the insecticidal potential of mungbean trypsin inhibitor which might be exploited for raising transgenic plants.  相似文献   

9.
Haq SK  Atif SM  Khan RH 《Biochimie》2005,87(12):1127-1136
Herein, we report the purification and biochemical characterization of a novel bi-functional protein proteinase/amylase inhibitor from the dietary leguminous pulse Phaseolus aureus Roxb. (Vigna radiata L.) by means of acetic acid precipitation, salt fractionation, ion-exchange chromatography (DEAE-cellulose) and affinity chromatography on trypsin-sepharose column. P. aureus inhibitor is a bi-functional inhibitor since it exhibits inhibitory activity towards trypsin-like and alpha-chymotrypsin-like serine proteinases as well as against alpha-amylases. It is a helix-rich protein (Mr 13,600) containing approximately eight tyrosines, one tryptophan and two cystines. N-terminal sequence alignment reveals no homology to other proteinase inhibitors reported from Phaseolus sp. thereby confirming that it is a novel inhibitor. Inhibitory activity measurements show that the inhibitor is quite stable even at extremely high temperatures and is only slightly affected by pH changes. Circular dichroism (CD) conformational studies revealed some changes in its near- as well as far-ultraviolet spectrum at extremes of pH and temperature. Treatments with trypsin for varying time periods did not alter its proteolytic inhibitory activity but caused some reduction in its amylase inhibitory activity.  相似文献   

10.
TaTI (Torresea acreana trypsin inhibitor), a new member of the Bowman-Birk trypsin inhibitor family, was purified from seeds ofTorresea acreana, one of the two known species ofTorresea, a Brazilian native Leguminosae of the Papilionoideae subfamily. Purification was performed by acetone fractionation, anion-exchange chromatography, and gel filtration. The TaTI appears asM r 7000 in SDS-PAGE under reducing conditions. There are 63 amino acid residues present in the TaTI sequence, which was confirmed by mass spectrometry (8388 daltons). The putative reactive sites residues were Lys-15 and Arg-42 at the first and second site, respectively. The antibodies raised against TcTI2,Torresea cearensis trypsin inhibitor 2, showed a cross-reaction with TaTI, but not with other Bowman-Birk inhibitors purified from Leguminosae. The inhibition constants of TaTI and TcTI2 were comparable when measured against trypsin, chymotrypsin, and factor XIIa, but not on plasmin. The latter was tenfold more effectively inhibited by TcTI2 then by TaTI. Neither TaTI nor TcTI2 affects thrombin, plasma kallikrein, or factor Xa.  相似文献   

11.
The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.  相似文献   

12.
Inga laurina is a tree that belongs to the Mimosoideae sub-family of the Leguminosae. A protein inhibitor of trypsin (ILTI) was isolated from its seeds by ammonium sulphate precipitation, ion-exchange chromatography and rechromatography on an HiTrap Q ion-exchange column. By SDS-PAGE, ILTI yielded a single band with a Mr of 20 kDa with or without reduction. ILTI was found to be a single polypeptide chain containing 180 amino acids, the sequence of which was clearly homologous to the Kunitz family of serine protease plant protein inhibitors, and it also showed significant similarity to the seed storage proteins, sporamin and miraculin. However, ILTI displayed major differences to most other Kunitz inhibitors in that it contained only one disulfide bridge, and did not have two polypeptide chains as for the majority of other Kunitz inhibitors purified from Mimosoideae species. ILTI inhibited bovine trypsin with an equilibrium dissociation constant (K(i)) of 6 x 10(-9)M, but did not inhibit chymotrypsin, papain and alpha-amylase. Its amino acid sequence contained a Lys residue at the putative reactive site (position 64). ILTI was stable over a wide range of temperature and pH and in the presence of DTT.  相似文献   

13.
By repeated treatments of trypsin with phenylmethylsulfonyl fluoride (PMSF), followed by base elimination of PMS from the PMS-trypsin, a catalytically inactive anhydrotrypsin preparation of low (less than 1%) active trypsin content was obtained. Inactive material was removed by affinity chromatography on trypsin inhibitor-Sepharose 4B and the purified anhydrotrypsin with full binding capacity for trypsin inhibitors was coupled to cyanogen bromide-activated Sepharose 4B. When used below its maximum capacity for trypsin inhibitors the anhydrotrypsin-Sepharose-4B affinity column absorbed both classes of inhibitors present in soybean. When overloaded, the Kunitz type was bound preferentially. Based on this observation, conditions for the partial separation of the two types of inhibitors were worked out.  相似文献   

14.
A protein proteinase inhibitor (PI) has been purified from pigeonpea Cajanus cajan (L.) PUSA 33 variety by acetic-acid precipitation, salt fractionation and chromatography on a DEAE-Cellulose column. The content of inhibitor was found to be 15 mg/20 g dry weight of pulse. The molecular weight of the inhibitor as determined by SDS-PAGE under reducing conditions was found to be about 14,000. It showed inhibitory activity toward proteolytic enzymes belonging to the serine protease group, namely trypsin and alpha-chymotrypsin. The inhibitory activity was stable over a wide range of pH and temperatures. Estimation of sulfhydryl groups yielded one free cysteine and at least two disulfide linkages. N-terminal sequence homology suggests that it belongs to the Kunitz inhibitor family. Structural analysis by circular dichroism shows that the inhibitor possesses a largely disordered structure.  相似文献   

15.
Plant α-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the α-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13 756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional α-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus α-amylases was observed. The inhibitor is more effective against insect α-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional α-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

16.
A trypsin‐like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G‐100 and DEAE‐cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh‐Sabz, May‐Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17–20 of Brait; fractions 18 and 21–26 of Torsh‐Sabz; fractions 1–7, 11–17, and 19–21 of May‐Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May‐khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties.  相似文献   

17.
A specific protein—an inhibitor of Colletotrichum lindemuthianum protease—was isolated from kidney bean seeds in a homogeneous form. The purification procedure included gel filtration, isoelectric focusing and affinity chromatography on trypsin-Sepharose column. The latter was introduced to separate the fungal protease inhibitor from closely related trypsin and chymotrypsin inhibitors present in kidney bean seeds.  相似文献   

18.
A trypsin inhibitor from seeds of faba bean (Vicia faba L.) was purified to near homogeneity as judged by native-PAGE with about 11 % recovery using ammonium sulphate fractionation, ion-exchange chromatography on DEAE-cellulose and gel filtration through Sephadex G-100. The inhibitor had a molecular weight of 18 kD as determined by SDS-PAGE and Sephadex G-100. The inhibitor inhibited trypsin and chymotrypsin to the extent of 48 and 12 %, respectively. The inhibtion was of non-competitive type with dissociation constant for the enzyme inhibitor complex in the region of 0.07 mg·ml−1. The inhibtor was stable between pH 4 and 5. It completely lost its activity when heated at 125 °C for 1 h or at 100 °C for 2 h. The inhibitor also lost its activity on exposure to 2-mercaptoethanol. Based on these properties, it could be concluded that Vicia faba trypsin inhibitor belongs to Bowman-Birk type of inhibitors, as it has molecular weight lower than generally observed for Kunitz type inhibitors.  相似文献   

19.
A trypsin inhibitor (PDTI) was isolated from Peltophorum dubium seeds by affinity chromatography on a thyroglobulin-agarose or a trypsin-agarose column. In both cases, SDS-PAGE showed two bands of M(r) 20,000 and 22,000, which could not be resolved. Their amino-terminal sequences were identical and similar to that of Kunitz-type soybean trypsin inhibitor (SBTI). Mass spectrometry analysis of tryptic digests of both bands showed 16 coincident peaks, suggesting that they are closely related proteins. The K(i)s for trypsin and chymotrypsin inhibitory activity of PDTI were 1.6 x 10(-7) and 1.3 x 10(-5)M, respectively. Lectin-like activity of PDTI and SBTI, detected by hemagglutination of rabbit erythrocytes, was inhibited by sialic acid-containing compounds. PDTI and SBTI caused apoptosis of Nb2 rat lymphoma cells, demonstrated by decrease of viability, DNA hypodiploidy, DNA fragmentation, and caspase-3-like activity. They had no effect on normal mouse splenocytes or lymphocytes, whereas they caused apoptosis of concanavalin A-stimulated mouse lymphocytes.  相似文献   

20.
The trypsin inhibitor SOTI was isolated from Spinacia oleracea L. seeds through ammonium sulfate precipitation, Sepharose 4B-trypsin affinity chromatography, and Sephadex G-75 chromatography. This typical Kunitz inhibitor showed remarkable stability to heat, pH, and denaturant. It retained 80% of its activity against trypsin after boiling for 20 min, and more than 90% activity when treated with 6 M guanidine hydrochloride. The formation of stable SOTI-trypsin complex (K i = 2.3·10−6 M) is consistent with significant inhibitory activity of SOTI against trypsin-like proteinases present in the larval midgut of Pieris rapae. Sequences of SOTI fragments showed homology with other inhibitors. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 1, pp. 131–140.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号