首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli, mutations which lower the level of CDP-diglyceride synthetase are designated cds and map at min 4. The cds-8 mutation resulted in strikingly defective enzyme activity and also rendered cells pH sensitive for growth. Both the inhibition of growth and the massive accumulation of phosphatidic acid which occur in a cds-8 mutant at pH 8 were suppressed by mutations at a second locus, designated cdsS, which mapped between argG and gltB near min 68. The cdsS3 mutation by itself did not affect CDP-diglyceride synthetase activity in wild-type cells, but it caused a twofold stimulation of the residual activity present in strains harboring cds-8. Both the insensitivity to pH and the twofold stimulation of residual activity were lost by introduction of an F' strain carrying cdsS+ into a recA1 cds-8 cdsS3 host. When a culture of a cds-8 cdsS+ strain was shifted to pH 8, the residual specific activity of synthetase dropped by 75% within 100 min. In a cds-8 cdsS3 double mutant under the same conditions, the activity declined appreciably less, about to the level found in the cds-8 cdsS+ strain under permissive conditions (pH 6). Thus, it appears that mutations in the cdsS gene suppress the pH sensitivity of cds mutants by inhibiting the decay of residual CDP-diglyceride synthetase activity at the nonpermissive pH. The cdsS locus appears to be distinct from any known nonsense or missense suppressor.  相似文献   

2.
Enzymatic synthesis of cytidine diphosphate diglyceride   总被引:15,自引:0,他引:15  
Evidence is presented for the enzymatic formation of cytidine diphosphate diglyceride in microsomal preparations from guinea pig liver according to the reaction: CTP + phosphatidic acid right harpoon over left harpoon CDP-diglyceride + p-O-P. Conditions have been found in which the incorporation of labeled CTP into CDP-diglyceride is almost entirely dependent upon added phosphatidic acid. The incorporation of CMP into lipid is very slight. A substantial net synthesis of CDP-diglyceride takes place under these conditions. Some properties of the enzyme system are described.  相似文献   

3.
The enzymes of phospholipid synthesis in Clostridium butyricum   总被引:5,自引:0,他引:5  
We have examined extracts of Clostridium butyricum for several enzymes of phospholipid synthesis. Membrane particles were shown to catalyze the formation of CDP-diglyceride from [3H]CTP and phosphatidic acid. The reaction was dependent on Mg2+ and stimulated by monovalent cations. CDP-diglyceride formed in vitro was found to be a substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. The formation of phosphatidylglycerophosphate from added CDP-diglyceride and [U-14C]sn-glycerol-3-phosphate was dependent on Mg2+ and Triton X-100. The dephosphorylation of endogenously-generated phosphatidylglycerophosphate to yield phosphatidylglycerol was observed to be pH-dependent. The formation of phosphatidylserine from CDP-diglyceride and L-[3-14C]serine was stimulated by Mg2+ and Triton X-100. dCDP-diglyceride was a suitable substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. Phosphatidylserine decarboxylase activity was barely detectable in membrane particles from C. butyricum. The addition of E. coli membrane particles provided efficient phosphatidylserine decarboxylase activity in this system. Although plasmalogens are the principal lipids of C. butyricum, none of the products of phospholipid synthesis formed in vitro contained measurable amounts of plasmalogens. The subcellular distribution of both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase in C. butyricum was also studied. Both were found to be membrane-associated.  相似文献   

4.
CDP-diglyceride, an important metabolic intermediate in the biosynthesis of phospholipids, has been isolated for the first time from a mammalian tissue. The isolated material, labeled in incubations of intact rat pineal glands with 32P, [3H]cytidine, or [3H]CTP in the presence of DL-propranolol, was chromatographically identical with authentic CDP-diglyceride and was able to serve as phosphatidyl donor in the enzymatic synthesis of phosphatidylinositol and phosphatidyglycerol. It yielded the expected products upon enzymatic and chemical degradation. No dCDP-diglyceride was detected No radioactive CDP-diglyceride was detected following incubations in the absence of propranolol. Stimulation of CDP-diglyceride labeling from 32P1 occurred at propranolol concentrations between 0.03 and 1.0 mM. Net synthesis of the liponucleotide was shown. At 0.1 mM, propranolol incrased the incorporation of radioactivity into phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid. When inositol (10 mM) and propranolol (0.1 mM) were both present, phosphatidylinositol labeling was further increased, wheas stimulation of phosphatidylglycerol and CPD-diglyceride labeling was abolished. Since CDP-diglyceride did not accumulate in the absence of the drug, its availability may normally be the limiting factor in phosphatidylinositol and phosphatidylglycerol biosynthesis. When propranol is present, inositol may become limiting and thus may lead to the observed labeling pattern.  相似文献   

5.
The cds gene of Escherichia coli codes for the enzyme CDP-diglyceride synthetase. We now report the construction of plasmids which carry cds. Using these plasmids, we have sequenced 1274 base pairs of DNA, including a 750-base pair open reading frame which is the coding region of the cds gene. This DNA sequence allows the deduction of the primary peptide sequence for CDP-diglyceride synthetase. The protein is very hydrophobic, and, assuming no processing or modification, has a molecular weight of 27,570. Furthermore, there is a second open reading frame immediately after cds, implying that cds may be part of an operon. We have also constructed a runaway replication cds-plasmid that directs approximately 50-fold overproduction of CDP-diglyceride synthetase. This overproduction has been utilized in the purification of the enzyme to homogeneity, as described in the accompanying paper (Sparrow, C.P., and Raetz, C.R.H., J. Biol. Chem. 260, 12084-12091). Finally, the molecular cloning work reported herein allows the exact placement of the cds gene on the E. coli genetic map.  相似文献   

6.
A versatile synthesis of spin-labelled radioactive cytidine diphospho-sn-1,2-diacylglycerol (CDP-diglyceride) has been developed based on the combination of the enzymatic acylation of radioactive sn-glycero-3-phosphate with 12-doxyl stearic acid and the chemical conversion of the thus obtained spin-labelled radioactive phosphatidic acid with cytidine monophosphomorpholi-date into spin-labelled radioactive CDP-diglyceride. The method for the isolation and purification of the latter compound was described. This obtained CDP-[2-3H]diglyceride contained 10% of fatty acids of paramagnetic nature, presumably present as a covalently bound 12-doxyl stearic acid esters. The biological activity was tested by using the synthesized compound as a substrate in the mitochondrial biosynthesis of phosphatidylglycerol. It was found that spin-labelled CDP-[2-3H]diglyceride prepared as described can be converted in the presence of sn-[2-14C]-glycero-3-phosphate into a spin-labelled [2-3H, 2'-14C]phosphatidylglycerol with isolated rat liver mitochondria, establishing therefore that the site of its utilization is identical with the site of phosphatidylglycerol synthesis in isolated mitochondria, i.e. inner mitochondrial membrane. Results described demonstrate that the synthesized spin-labelled CDP-diglyceride can be used as a specific probe for the spin- and radioactive covalent labelling of polyglycerophosphatides of mitochondrial membranes. Some implications and further possibilities in the study of biological membranes using the spin-labelled radioactive CDP-diglyceride are discussed.  相似文献   

7.
Mutants of Escherichia coli K-12 defective in CDP-diglyceride:L-serine phosphatidyltransferase (phosphatidylserine synthetase) can be isolated by a rapid autoradiographic screening assay described previously (Raetz, C. R. H. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 2274-2278). Four organisms of this kind have now been characterized. The gene (designated pss) which is altered in these mutants is closely linked to the nadB locus near minute 49 on the E. coli chromosome. Strains carrying the pss-8 mutation do not grow at elevated temperatures and have low levels of an altered synthetase in cell extracts. An analysis of several hundred transductants and temperature-resistant revertants reveals that the pss-8 mutation is responsible both for the enzyme defect and for the phenotype. When a pss-8 mutant is shifted to the nonpermissive temperature, the cells stop dividing and form long filaments. After 3 hours at 44 degrees the level of phosphatidylethanolamine drops from 66 to 32% (percentage of the total lipid phosphorus), while the combined levels of phosphatidylglycerol and cardiolipin rise from 34 to 68%.  相似文献   

8.
sn-Glycerol 3-phosphorothioate, a bacteriocidal analog of sn-glycerol 3-phosphate in strains of Escherichia coli with a functioning glycerol phosphate transport system, was investigated for its ability to be incorporated into phospholipid under in vitro and in vivo conditions. A cell-free particulate fraction from E. coli strain 8 catalyzes the transfer of sn-[3H]glycerol 3-phosphoro[35S]thioate to chloroform-soluble material in the presence of either CDP-diglyceride or palmitoyl coenzyme A. With CDP-diglyceride as the co-substrate, the product of the reaction was tentatively identified as phosphatidylglycerol phosphorothioate. No formation of phosphatidylglycerol was observed, suggesting that the specific phosphatase required for the synthesis of phosphatidylglycerol does not catalyze, or else at a greatly reduced rate, the hydrolysis of the phosphorothioate monoester linkage. The kinetics of incorporation of sn-[3H]glycerol 3-phosphate and phosphorothioate into chloroform-soluble material in the presence of CDP-diglyceride are almost identical. In the presence of palmitoyl coenzyme A, sn-[3H]glycerol 3-phosphoro[35S]thioate was converted to the phosphorothioate analog of phosphatidic acid. Kinetic analysis showed that the apparent Km values for the incorporation of the phosphate and the phosphorothioate derivatives into phospholipid were 0.4 and 0.8 mM, respectively. The Vmax for the phosphorothioate analog was approximately half that for the phosphate derivative. Chemically synthesized thiophosphatidic acid was not a substrate for CTP:phosphatidic acid cytidylyltransferase. sn-[3H]Glycerol 3-phosphoro[35S]thioate was incorporated into phospholipid by cultures of E. coli strain 8. The major phosphorothioate-containing phospholipid synthesized in vivo was identified as 1,2-diacyl-sn-[3H]glycerol 3-phosphoro[35S]thioate. The phosphorothioate analog of phosphatidylglycerol phosphate was not observed despite our observations that this analog can be synthesized in vitro. Our results indicate that the phosphorothioate analog is an effective sn-glycerol 3-phosphate surrogate and suggest that a major reason for its toxicity toward E. coli strain 8 may be due to a total blockade of endogenous phospholipid biosynthesis.  相似文献   

9.
Mutants of Escherichia coli K12, defective in phosphatidylserine synthetase (pss), can be isolated as temperature-sensitive, conditional lethals. When cultivated at intermediate temperatures (30 degrees), such mutants contain approximately 3 times more phosphatidylglycerol plus cardiolipin (and less phosphatidylethanolamine) than normal. We now wish to report that, under these conditions, the pss-8 mutant is hypersensitive to certain antibiotics, especially to streptomycin, kanamycin, and gentamicin, although also to ampicillin and novobiocin. At 30 degrees, the membrane protein and fatty acid composition of pss-8 is nearly normal, i.e. identical with an isogenic pss+ organism. Radiochemical labeling and bacteriophage growth studies show that lipopolysaccharide is also unaltered. Therefore, the antibiotic hypersensitivity of pss-8 differs from previously reported hypersensitivities, associated with lipopolysaccharide defects. These results suggest that the polar phospholipid headgroups may play an important role in maintaining the barrier function of the outer gramnegative membrane and that putative inhibitors of the phosphatidylserine synthetase might potentiate the action of numerous antibiotics currently in clinical use.  相似文献   

10.
An enzyme has been found in particulate fractions of Escherichia coli that catalyzes the incorporation of cytidine triphosphate (CTP) into lipid in the presence of exogenous phosphatidic acid and Mg(++). The product has been identified enzymatically and by chromatography as cytidine diphosphate diglyceride. The reaction is optimal at a pH of 6.5 and Mg(++) concentration of 5-10 mm. The apparent K(m) for CTP is 7 x 10(-4)M and for phosphatidic acid, 2 x 10(-3)M. The reaction rate falls off rapidly with time and ceases entirely after 1 hr as the result of inactivation of the system by Mg(++).  相似文献   

11.
The cytosine liponucleotides CDP-diglyceride and dCDP-diglyceride are key intermediates in phospholipid biosynthesis in Escherichia coli (C. R. H. Raetz and E. P. Kennedy, J. Biol. Chem. 248:1098--1105, 1973). The enzyme responsible for their synthesis, CTP:phosphatidic acid cytidylytransferase, was solubilized from the cell envelope by a differential extraction procedure involving the detergent digitonin and was purified about 70-fold (relative to cell-free extracts) in the presence of detergent. In studies of the heat stability of the enzyme, activity decayed slowly at 63 degrees C. Initial velocity kinetic experiments suggested a sequential, rather than ping-pong, reaction mechanism; isotopic exchange reaction studies supported this conclusion and indicated that inorganic pyrophosphate is released before CDP-diglyceride in the reaction sequence. The enzyme utilized both CTP and dCTP as nucleotide substrate for the synthesis of CDP-diglyceride and dCDP-diglyceride, respectively. No distinction was observed between CTP and dCTP utilization in any of the purification, heat stability, and reaction mechanism studies. In addition, CTP and dCTP were competitive substrates for the partially purified enzyme. It therefore appears that a single enzyme catalyzes synthesis of both CDP-diglyceride and dCDP-diglyceride in E. coli. The enzyme also catalyzes a pyrophosphorolysis of CDP-diglyceride, i.e., the reverse of its physiologically important catalysis.  相似文献   

12.
Cell-free extracts of Salmonella typhimurium, Serratia marcescens, Enterobacter aerogenes, and Micrococcus cerificans contained the following enzymatic activities related to phospholipid metabolism: cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diglyceride):l-serine O-phosphatidyltransferase (phosphatidylserine synthase), phosphatidylserine decarboxylase, CDP-diglyceride:sn-glycero-3-phosphate phosphatidyltransferase (phosphatidylglycerophosphate synthase), phosphatidylglycerophosphate phosphatase, and CDP-diglyceride hydrolase. The intracellular distribution of these enzymatic activities as determined by sucrose density gradient centrifugation of cell-free extracts was shown to be similar in each species investigated. The phosphatidylserine decarboxylase, phosphatidylglycerophosphate synthase, and CDP-diglyceride hydrolase activities were all associated with the cell envelope fraction, whereas the phosphatidylserine synthase activity was associated mainly with the ribosomal fraction. These enzymatic activities are comparable and have an intracellular distribution similar to those found in Escherichia coli cell-free extracts. Therefore, the pathways established for phospholipid biosynthesis in E. coli can also account for the synthesis of the major phospholipids (phosphatidylethanolamine and phosphatidylglycerol) in several other gram-negative organisms. In addition, the unusual ribosomal association of the phosphatidylserine synthase from E. coli (Raetz and Kennedy, J. Biol. Chem. 247:2008-2014, 1972) appears to be a general property for this activity in several other bacterial species.  相似文献   

13.
Mobility of phospholipid hydrocarbons in the Escherichia coli B membrane fractions was studied by labeling phosphatidylethanolamine or phosphatidylglycerol in situ by biosynthetic incorporation of the spin label. For this purpose, CDP-diacylglycerol spin label was synthesized from phosphatidic acid spin label and cytidine 5'-phosphoromorpholidate and purified by thin-layer chromatography. DCP-diacylglycerol spin label was then incorporated into phospholipids biosynthetically. ESR spectra of these E. coli B membrane fractions showed that phosphatidylglycerol tended to interact with membrane proteins through the mediation of Mg2+, whereas phosphatidylethanolamine had less of this tendency and was more involved in the formation of the bulk of the bilayer continuum of the membrane. These conclusions were also supported by labeling membranes with exogenous spin-labeled phospholipids, although there was some indication that exogenous phospholipids were incorporated into sites different from the sites of incorporation of phospholipids newly synthesized in situ.  相似文献   

14.
Mutants of Escherichia coli defective in phosphatidylserine synthetase (pss) make less phosphatidylethanolamine than normal cells, and they are temperature sensitive for growth. We have isolated a new mutant, designated RA2021, which is better than previously available strains in that the residual phosphatidylethanolamine level approaches 25% after 4 h at 42 degrees C. The total amount of phospholipid normalized to the density of the culture is about the same in RA2021 (pss-21) as in the isogenic wild-type RA2000 (pss(+)). Consequently, there is a net accumulation of polyglycerophosphatides in the mutant, particularly of cardiolipin. The addition of 10 to 20 mM MgCl(2) to a culture of RA2021 prolongs growth under nonpermissive conditions and prevents loss of cell viability, but it does not eliminate the temperature-sensitive phenotype. Divalent cations, like Mg(2+), do not correct the phospholipid composition of the mutant, but may act indirectly by balancing the negative charges of phosphatidylglycerol and cardiolipin. To determine the effects of the pss mutation on membrane composition, we have examined the subcellular distribution of the polyglycerophosphatides that accumulate in these strains. All of the excess anionic lipids of RA2021 are associated with the envelope fraction and are distributed equally between the inner and outer membranes. The protein compositions of the isolated membranes do not differ significantly in the mutant and wild type. The fatty acid composition of RA2021 is almost the same as wild type at 30 degrees C, but there is more palmitic and cyclopropane fatty acid at 42 degrees C. These results demonstrate that the modification of the polar lipid composition observed in pss mutants affects both membranes and that cardiolipin, which is not ordinarily present in large quantities, can accumulate in the outer membrane when it is overproduced by the cell. The altered polar headgroup composition of the outer membrane in pss mutants may account, in part, for their hypersensitivity to the aminoglycoside antibiotics.  相似文献   

15.
Intact mitochondria from the endosperm of castor bean were isolated on linear sucrose gradients. These mitochondria were ruptured and the membranes separated on discontinuous sucrose gradients into outer membrane, intact inner membrane, and ruptured inner membrane fractions. Each membrane fraction was examined for its capacity to synthesize phosphatidylglycerol, CDP-diglyceride, phosphatidylcholine via methylation, and phosphatidic acid. The syntheses of phosphatidylglycerol, CDP-diglyceride, and phosphatidylcholine were localized exclusively in the inner mitochondrial membrane fractions while phosphatidic acid synthesis occurred in both the inner and outer mitochondrial membranes.  相似文献   

16.
Cytidine diphosphate diglyceride was isolated from beef liver by a combination of silicic acid column, DEAE-cellulose column, and this layer chromatography. The product (5.8 to 17.4 mumol/kg of liver) contained cytidine/phosphate/fatty acids in the molar proportions 1.05/2.0/2.05 (theoretical, 1.0/2.0/2.0) (average for three preparations). The liponucleotide was split quantitatively by a partially purified hydrolase from Escherichia coli, specific for CDP-diglyceride, (Raetz, C. R. H., Hirschberg, C. B., Dowhan, W., Wickner, W. T., and Kennedy, E. P. (1972) J. Biol. Chem. 247, 2245-2247) into phosphatidic acid and a water-soluble nucleotide that was chromatographically identical with CMP. No dCMP was located in these hydrolysates. The liver liponucleotide was more effective than a synthetic preparation of CDP-diglyceride in promoting the formation of phosphatidylinositol with guinea pig brain microsomes. The fatty acid composition of CDP-diglyceride was compared with metabolically related phospholipids from beef liver. The liponucleotide had a similar composition to phosphatidylinositol, characterized by a high level of stearate and with arachidonate as the major unsaturated fatty acid. The content of arachidonate in both lipids was significantly higher than that in phosphatidic acid. The profile of fatty acids of cardiolipin was quite unlike that of CDP-diglyceride. These findings suggest several alternatives for the metabolic origins of beef liver CDP-diglyceride: (a) CDP-diglyceride is formed from an atypical pool of phosphatidic acid, (b) the enzyme is selective for arachidonoyl-containing species of phosphatidic acid, (c) the liponucleotide may also be derived from phosphatidylinositol by the back-reaction of CDP-diglyceride: inositol phosphatidyltransferase.  相似文献   

17.
Bacillus subtilis No. 344 is a cytidine-producing mutant strain derived from wild type strain No. 122. When 3-deazauracil-resistant mutants were derived from strain No. 344, some of the mutants had higher productivities of cytidine. Among them, strain No. 428 accumulated 14.2 mg/ml cytidine in the culture. Cytidine 5′-triphosphate (CTP) synthetase from strain No. 428 changed to be free from feedback inhibition by CTP, compared with the enzyme from strain No. 344.  相似文献   

18.
Cytidine 5'-diphosphate (CDP)-diglyceride is hydrolyzed to phosphatidic acid and cytidine 5'-monophosphate by a specific membrane-bound enzyme in cell-free extracts of Escherichia coli. The hydrolase can be extracted from the particulate fraction with Triton X-100 and purified 1,000-fold in the presence of this detergent. Several nucleoside disphosphate diglycerides were synthesized to determine the substrate specificity of the hydrolase. CDP-diglyceride was hydrolyzed preferentially, although uridine 5'-diphosphate-diglyceride, guanosine 5'-diphosphate-diglyceride, and adenosine 5'-diphosphate (ADP)-diglyceride were also slowly hydrolyzed. Surprisingly, the purified enzyme did not catalyze detectable cleavage of deoxy-CDP (dCDP)-diglyceride. The liponucleotide pool of E. coli contains dCDP-diglyceride and CDP-diglyceride in approximately equal amounts (Raetz and Kennedy, 1973). Water-soluble nucleoside pyrophosphates, such as CDP-choline, nicotinamide adenine dinucleotide, or adenosine 5'-triphosphate are not attacked by this specific hydrolase. Hydrolysis of CDP-diglyceride is strongly inhibited by adenosine 5'-monophosphate and by ADP-diglyceride.  相似文献   

19.
T J Larson  W Dowhan 《Biochemistry》1976,15(24):5212-5218
Cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDPdiglyceride):L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthetase) is bound tightly to the ribosomes in crude extracts of Escherichia coli. After separation of the enzyme from the ribosomes by the method of Raetz and Kennedy (Raetz, C.R.H., and Kennedy, E.P. (1974), J. Biol. Chem. 249, 5038), we have purified the enzyme to 97% of homogenekty. The major portion of the overall 5500-fold purification was attained by substrate-specific elution from phosphocellulose using CDP-diglyceride in the presence of detergent. The purified enzyme migrated as a single band with an apparent minimum molecular weight of 54 000 when subjected to electrophoresis on polyacrylamide disc gels containing sodium dodecyl sulfate. The purified enzyme catalyzed exchange reactions between cytidine 5'- monophosphate (CMP) and CDP-diglyceride and between serine and phosphatidylserine. The enzyme also catalyzed the hydrolysis of CDP-diglyceride to form CMP and phosphatidic acid. dCDP-diglyceride was equivalent to CDP-diglyceride in all reactions catalyzed by the enzyme. In addition, the purified enzyme catalyzed the formation of phosphatidylglycerol or phosphatidylglycerophosphate at a very slow rate when serine was replaced as substrate by glycerol or sn-glycero-3-phosphate, respectively. These results suggest catalysis occurs via a ping-pong mechanism through the formation of a phosphatidyl-enzyme intermediate.  相似文献   

20.
A complete procedure to prepare a highly labeled phosphatidyl-L-[U-14C]serine possessing the same fatty acid composition of brain phospholipids is reported. CDP-diglyceride was synthesized by reaction between phosphatidic acid and CMP-morpholidate as the dicyclohexylcarboxamidium salt. The reaction between CDP-diglyceride and L-[U-14C]serine to produce the labeled phosphatidylserine was catalyzed by the CDP-diglyceride: L-serine phosphatidyl transferase (EC 2.7.8.8) from E. coli. A selective inhibition of phosphatidylserine decarboxylase activity, present as contaminant in the enzyme extract, was introduced in order to avoid a low yield of product. Traces of phosphatidylethanolamine (about 1%) were easily removed by preparative thin-layer chromatography. The yield of the labeled product was as high as 87% and it specific radioactivity was 170 mCi/mmol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号