首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The content of 5'-methylcytosine in total DNA of mouse liver increases 2--2,5-fold 3 hrs after a single intraperitoneal injection of antioxidant (4-methyl-2,6-ditretbutylphenol) (20 or 60 mg per 1 kg of body weight) and makes up to 2--2.4 mol.%. The methylation of liver DNA is also increased more than 2-fold in Ehrlich ascite carcinoma. The DNA isolated from mouse liver after administration of antioxidant or during cancer growth markedly differs from liver DNA of intact animals in its CH3-accepting ability under in vitro methylation by the methylase complex from Enterobacter cloacea. The changes in DNA methylation in mouse liver under the effects of antioxidant and in Ehrlich ascite carcinoma are correlated with the changes in the antioxidant activity of liver nuclear lipids.  相似文献   

2.
鼠肝细胞癌变中DNA甲基化作用的研究   总被引:4,自引:0,他引:4  
Activity of DNA methylase and DNA methylation level were measured from normal mouse liver, mouse liver charged with H22a ascitic hepatoma and H22a ascitic hepatoma cell by measuring incorporation of H3-methyl. S-Adenosyl-3H-methyl-methionine (3H-SAM) was used as methyl donor. DNA methylation level of different cells were measured by HP-LC. DNA methylase activity and DNA methylation level of H22a ascitic hepatoma, mouse liver charged with H22a ascitic hepatoma are lower than normal mouse liver. Treatments of antitumor drugs lead to a rising of DNA methylase activity of tumor cell, however, the DNA methylation level of tumor cell has not rised after such treatments.  相似文献   

3.
本文用~3H标记的S-腺苷酰甲硫氨酸(~3H-SAM)为甲基供体,以同位素掺入法测定了正常小鼠肝细胞、H_(223)腹水癌细胞及荷癌肝细胞的DNA甲基化酶活力。并用HPLC法测定了上述细胞的DNA甲基化水平。发现:H_(223)腹水癌细胞及荷癌肝细胞的DNA甲基化酶活力和DNA甲基化水平明显低于正常肝细胞。当以抗肝癌药物去甲斑蝥素和斑蝥酸钠处理荷癌小鼠6天后,可使H_(223)腹水癌细胞及荷癌肝细胞的DNA甲基化酶活力回升,但并未检出DNA甲基化水平的回升。  相似文献   

4.
The organization of immunoglobulin gene segments coding for kappa light chains has been studied in uncloned and cloned DNA from mouse liver and a mouse myeloma. It is known that the C (constant, ref. 2) gene segment is present in the tumor DNA on two EcoRI fragments of 14 and 20 kb and in liver DNA on a 15 kb fragment. The 14 kb myeloma and the 15 kb liver fragment have been cloned previously. Here we report on the cloning of the 20 kb myeloma fragment and present detailed restriction maps covering about 22 kb of DNA surrounding the C gene segment in liver and tumor DNA. The region on the 20 kb fragment has been localized where a DNA rearrangement had occurred. The presence of two rearranged kappa light chain genes in one tumor is discussed in regard to the molecular basis of allelic exclusion.  相似文献   

5.
A major controversy in the area of DNA biochemistry concerns the actual in vivo levels of oxidative damage in DNA. We show here that 8-oxo-2-deoxyguanosine (oxo8dG) generation during DNA isolation is eliminated using the sodium iodide (NaI) isolation method and that the level of oxo8dG in nuclear DNA (nDNA) is almost one-hundredth of the level obtained using the classical phenol method. We found using NaI that the ratio of oxo8dG/10(5 )deoxyguanosine (dG) in nDNA isolated from mouse tissues ranged from 0.032 +/- 0.002 for liver to 0.015 +/- 0.003 for brain. We observed a significant increase (10-fold) in oxo8dG in nDNA isolated from liver tissue after 2 Gy of gamma-irradiation when NaI was used to isolate DNA. The turnover of oxo8dG in nDNA was rapid, e.g. disappearance of oxo8dG in the mouse liver in vivo after gamma-irradiation had a half-life of 11 min. The levels of oxo8dG in mitochondrial DNA isolated from liver, heart and brain were 6-, 16- and 23-fold higher than nDNA from these tissues. Thus, our results showed that the steady-state levels of oxo8dG in mouse tissues range from 180 to 360 lesions in the nuclear genome and from one to two lesions in 100 mitochondrial genomes.  相似文献   

6.
DNA ligase from mouse Ehrlich ascites tumor cells   总被引:1,自引:0,他引:1  
The molecular (Mr = 120,000; s20, w = 5S) and catalytic properties (Km (ATP) = 3 microM; Km (nicked DNA) = 0.2 microM; Km (Mg2+) = 3 mM) of DNA ligase from mouse Ehrlich ascites tumor cells are similar to those of the enzymes from calf thymus and rodent liver. The activity level of DNA ligase from the tumor cells is about 10-fold higher than that from mouse liver. Immunochemical titration of DNA ligase with antibodies against the calf thymus enzyme showed that the higher level of DNA ligase activity in the tumor cells is due to an increase in enzyme quantity and not to elevation of the catalytic efficiency of the enzyme molecule. These results suggest that there is little apparent difference between the qualities of DNA ligases from the tumor cells and normal tissues of rodents and calf.  相似文献   

7.
DNA renaturation kinetics was measured for the genomes of normal (spleen) and malignant (plasmacytoma) mouse tissues and for DNA from liver, sperm and developing embryos of the loach. It has been shown that the measuring of DNA renaturation kinetics makes it possible to reveal differences in the content of certain fractions of the repetitions in the genomes of different species. Moreover, differences in the distribution of the repetitions between hetero- and euchromatine can be identified. Loach embryo DNA (blastula stage) was shown to contain larger amount of the fraction renaturing at Cot less than 10(-2) as compared to liver and sperm DNAs (by 5%). An enrichment with respect to the intermediate repetitions (10(-2) less than Cot less than 10(2)) was found in the mouse plasmacytoma DNA as compared to the spleen DNA. The nature of these distinctions is discussed.  相似文献   

8.
A membrane-DNA complex isolated from the mitochondria of thymidine kinase deficient mouse cells could be shown to contain in addition to mitochondrial DNA two different DNA polymerases: (i) Mitochondrial DNA polymerase 1 exhibiting characteristics of the DNA polymerase described for HeLa cell mitochondria and (ii) mitochondrial DNA polymerase 2 showing properties comparable to those of the DNA polymerase isolated from mouse liver mitochondria.  相似文献   

9.
The interaction of p-[14C] chloro-o-toluidine with hepatic macromolecules of rats and mice has been investigated. At all time points after single administration the extent of binding decreased in the order protein greater than RNA greater than DNA in both species. The level of binding to mouse liver DNA was greater than that to rat liver DNA after both single and repeated administration. In vitro studies showed that mouse liver fractions catalysed the binding of p-chloro-o-toluidine to calf thymus DNA more readily than rat liver fractions. Conversely, binding to protein and RNA was more marked in the rat than in the mouse. Species differences in DNA repair rates were not observed. The results failed to demonstrate a preferential persistence of binding to mouse liver nonparenchymal cell DNA. Autoradiographic determinations did not demonstrate any effect of p-chloro-o-toluidine upon the incorporation of [3H] thymidine into subcutaneous capillary endothelial cells. The results suggest that different reactive metabolites are responsible for binding to DNA and protein, and that the pattern of reactive metabolites formed from p-chloro-o-toluidine in the mouse differs from that formed in rats.  相似文献   

10.
Recombinant adeno-associated virus (rAAV) vectors allow for sustained expression of transgene products from mouse liver following a single portal vein administration. Here a rAAV vector expressing human coagulation factor F.IX (hF.IX), AAV-EF1alpha-F.IX (hF.IX expression was controlled by the human elongation factor 1alpha [EF1alpha] enhancer-promoter) was injected into mice via the portal vein or tail vein, or directly into the liver parenchyma, and the forms of rAAV vector DNA extracted from the liver were analyzed. Southern blot analyses suggested that rAAV vector integrated into the host genome, forming mainly head-to-tail concatemers with occasional deletions of the inverted terminal repeats (ITRs) and their flanking sequences. To further confirm vector integration, we developed a shuttle vector system and isolated and sequenced rAAV vector-cellular DNA junctions from transduced mouse livers. Analysis of 18 junctions revealed various rearrangements, including ITR deletions and amplifications of the vector and cellular DNA sequences. The breakpoints of the vector were mostly located within the ITRs, and cellular DNA sequences were recombined with the vector genome in a nonhomologous manner. Two rAAV-targeted DNA sequences were identified as the mouse rRNA gene and the alpha1 collagen gene. These observations serve as direct evidence of rAAV integration into the host genome of mouse liver and allow us to begin to elucidate the mechanisms involved in rAAV integration into tissues in vivo.  相似文献   

11.
Radiofrequency (RF) ablation (RFA) is a minimally invasive treatment for colorectal-cancer liver metastases (CLM) in selected nonsurgical patients. Unlike surgical resection, RFA is not followed by routine pathological examination of the target tumor and the surrounding liver tissue. The aim of this study was the evaluation of apoptotic events after RFA. Specifically, we evaluated YO-PRO-1 (YP1), a green fluorescent DNA marker for cells with compromised plasma membrane, as a potential, early marker of cell death. YP1 was applied on liver tissue adherent on the RF electrode used for CLM ablation, as well as on biopsy samples from the center and the margin of the ablation zone as depicted by dynamic CT immediately after RFA. Normal pig and mouse liver tissues were used for comparison. The same samples were also immunostained for fragmented DNA (TUNEL assay) and for active mitochondria (anti-OxPhos antibody). YP1 was also used simultaneously with propidium iodine (PI) to stain mouse liver and samples from ablated CLM. Following RFA of human CLM, more than 90 % of cells were positive for YP1. In nonablated, dissected pig and mouse liver however, we found similar YP1 signals (93.1 % and 65 %, respectively). In samples of intact mouse liver parenchyma, there was a significantly smaller proportion of YP1 positive cells (22.7 %). YP1 and PI staining was similar for ablated CLM. However in dissected normal mouse liver there was initial YP1 positivity and complete absence of the PI signal and only later there was PI signal. Conclusion: This is the first time that YP1 was applied in liver parenchymal tissue (rather than cell culture). The results suggest that YP1 is a very sensitive marker of early cellular events reflecting an early and widespread plasma membrane injury that allows YP1 penetration into the cells.  相似文献   

12.
Specific cleavage of chromatin by restriction nucleases.   总被引:11,自引:11,他引:0       下载免费PDF全文
Digestion of mouse and rat liver nuclei with a restriction nuclease from Bacillus subtilis (Bsu) is examined in continuation of previous work from this laboratory (Pfeiffer et al., 1975, Nature 258, 450). The finding of more than 95% C in the 5'-termini of the DNA fragments generated during digestion with Bsu shows that the participation of endogenous nucleases in Bsu digestion is extremely small. The restriction nuclease Hae III, an isoschizomer of Bsu, yields identical degradation patterns. The patterns conform to what one expects from statistical calculations based on a nucleosome structure of chromatin with a region preferentially accessible to the nuclease of 40-50 nucleotide pairs per nucleosome. Integrity of the histones is maintained during digestion with restriction nucleases. Digestion of mouse liver nuclei with EcoRII shows that most if not all of the satellite DNA is organized in a nucleosome structure. Also in rat liver, much of the repetitive DNA appears to be present in nucleosomes.  相似文献   

13.
The average number of rRNA genes per haploid genome (rRNA gene dosage) of the cells present in liver and brain was determined throughout the lifespan of the inbred C57BL/6J mouse strain and of human. Ribosomal RNA gene dosage was determined using the RNA-excess DNA - RNA hybridization technique. DNA was extracted and purified using a CsCl/chloroform method with a high percent yield (over 90%) to minimize any possible effects of tissue and age-dependent selective loss or gain of rRNA genes. Radioactive rRNA was from the liver of the youngest age group for either mouse or human in all hybridization experiments, with DNA from the different tissues and age groups being the only variable. In the young mouse (35-49 days), the rRNA gene dosage was 36% higher in brain (114 genes), as compared to liver (84 genes). The rRNA gene dosage remained essentially constant as a function of age for mouse brain; but between the age of about 220 to 440 days, it increased in liver, attaining approximately an equal value to that of brain. No significant difference was found in the rRNA gene dosage of brain or liver between different mice of the same age. In contrast to this result, a significant difference was found between human tissues of similar age. The rRNA gene dosage ranged about 2-fold (148-289) between 2 months to 75 years of age. An age-dependent trend, similar to that for mouse liver, was found when the averages of four different age groups totaling 20 individuals were compared. However, this was not statistically significant. No difference in the rRNA gene dosage as a function of sex or tissue was apparent. Several models are discussed to account for these results.  相似文献   

14.
In a previous study, we revealed that tumor necrosis factor (TNF) was secreted in mouse liver at an early phase of liver regeneration after partial hepatectomy. Here, we investigated direct actions of TNF on the in vitro DNA synthesis of adult mouse hepatocytes in primary culture. TNF enhanced both 3H-TdR uptake and the number of 3H-TdR-labeled nuclei of hepatocytes. Their time courses were similar to those by epidermal growth factor (EGF) with about a 15 h lag period and a peak period of 24-48 h. This action of TNF was abrogated by DNA polymerase alpha inhibitor, aphidicolin and blocked specifically by anti-TNF antibody. The actions of rmTNF and rhTNF were not distinguishable; ED50 was about 7.5U/ml (5ng/ml) and 30U/ml (20ng/ml) for maximal response (about 2-fold or more of control). Other inflammatory monokines showed differential effects on in vitro DNA synthesis of hepatocyte. Neither type of interleukin 1 affected hepatocyte DNA synthesis in the range examined (up to 50 ng/ml). IL-6 markedly inhibited the hepatocyte DNA synthesis stimulated by TNF and EGF. The action of TNF was completely suppressed by transforming growth factor beta, which is known as a potent inhibitor of hepatocyte growth. Interferon gamma also blocked this TNF action when added simultaneously. These results indicate that the activation of tissue macrophages and local secretion of TNF in liver after partial hepatectomy is of physiological importance in liver regeneration, in part by a direct stimulation of hepatocyte DNA synthesis. Cytokines induced by TNF may also participate in the later termination of liver regeneration.  相似文献   

15.
We examined the fragmentation of DNA treated with N-methyl-N-nitrosourea under conditions in which Ca2+, Mg2+-dependent endonuclease is active. The molecular mass of DNA found in mouse liver slices treated with methylnitrosurea in the presence of Ca2+ plus Mg2+ was 4 X 10(5) Da. Similar results were obtained with a reconstituted system containing partially purified Ca2+, Mg2+-dependent endonuclease and methylnitrosurea-treated DNA. The enzyme extensively cleaved methylnitrosurea-treated DNA, compared with non-treated DNA. The methylnitrosurea-treated nuclear proteins obtained from mouse liver nuclei had no effect on the DNA fragmentation by the enzyme. Using closed-circular DNA treated with methylnitrosurea, the enzyme produced single-strand cuts in the DNA, as was seen in non-treated, closed-circular DNA, however, the rate of hydrolysis was increased. Ca2+, Mg2+-dependent endonuclease thus warrants further investigation, with regard to the precise mechanism of extensive degradation of DNA in cells treated with carcinogenic alkylating agents.  相似文献   

16.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

17.
How receptors mediate the entry of hepatitis B virus (HBV) into the target liver cells is poorly understood. Recently, human squamous cell carcinoma antigen 1 (SCCA1) has been found to mediate binding and internalization of HBV to liver-derived cell lines in vitro. In this report, we investigate if SCCA1 is able to function as an HBV receptor and mediate HBV entry into mouse liver. SCCA1 transgene under the control of Rous sarcoma virus promoter was constructed in a minicircle DNA vector that was delivered to NOD/SCID mouse liver using the hydrodynamic technique. Subsequently, HBV-positive human serum was injected intravenously. We demonstrated that approximately 30% of the mouse liver cells expressed a high level of recombined SCCA1 protein for at least 37 d. The HBV surface antigen was found to persist in mouse liver for up to 17 d. Furthermore, HBV genome also persisted in mouse liver, as determined by polymerase chain reaction, for up to 17 d, and in mouse circulation for 7 d. These results suggest that SCAA1 might serve as an HBV receptor or co-receptor and play an important role in mediating HBV entry into hepatocytes, although its role in human HBV infection remains to be determined.  相似文献   

18.
Hepatocyte proliferation in the liver regenerating after partial hepatectomy ceases when the organ is restored, and the mechanism of this phenomenon is still unclear. In the experiments on fusing hepatocytes from the regenerated mouse liver (15 days after partial hepatectomy) with NIH 3T3 mouse fibroblasts, we revealed no DNA synthesis in the nuclei of stimulated fibroblasts in heterokaryons (in the presence of hepatocyte nuclei), whereas DNA synthesis in nonfused cells was undisturbed. In this work, our purpose was to find out whether the suppression of DNA synthesis in heterokaryons could be due to the appearance in hepatocytes of some endogenous factors having an inhibitory effect on proliferation. To this end, hepatocytes from the mouse liver regenerated after partial hepatectomy were treated with cycloheximide for 1–4 h and were then fused with stimulated fibroblasts. Such a short-term treatment of hepatocytes with cycloheximide proved to result in the loss of their ability to inhibit DNA synthesis in the nuclei of stimulated or quiescent fibroblasts in heterokaryons, but hepatocytes proper actively proliferated in the medium with a low serum content (0.2%). When the mice with the liver regenerated after partial hepatectomy were treated with a single sublethal dose of cycloheximide (3 mg/kg), their hepatocytes taken two days after this treatment had no inhibitory effect. Puromycin, another inhibitor of protein synthesis, had the same effect on hepatocytes. These results may be interpreted as evidence that the final stage of liver regeneration after damage is controlled by the factors having a negative effect on cell proliferation.  相似文献   

19.
BACKGROUND: Injection of naked DNA has been viewed as a safer alternative to current gene delivery systems; however, the rate of clearance from the circulation has been a constant barrier in developing these methods. Naked DNA after intravenous (i.v.) injection will be taken up by the liver and depredated by serum nucleases. MATERIALS AND METHODS: Our study examines the mechanisms involved in clearance of naked DNA by each compartment, the blood and the liver, in an in vivo mouse model. Confocal microscopy and transmission electron microscopy were employed to identify the type of cells taking up DNA and the barrier to DNA access to hepatocytes, respectively. RESULTS: Our data showed the liver could take up over 50% of 5 microg perfused pDNA, with a maximum 25 microg of pDNA during a single pass, and a slower clearance rate compared to that of liver uptake. It was demonstrated that naked DNA is primarily taken up by the liver endothelial cells and this endothelial barrier to transfection could be overcome by manually massaging the liver, which enlarges the fenestrae. CONCLUSIONS: This study clarifies the mechanism by which naked DNA is eliminated from the circulation after i.v. injection, focusing on the role of both the liver and blood compartments in vivo (i.e. mouse). With this knowledge, we can more clearly understand the mechanism of naked DNA clearance and develop more efficient strategies for DNA transfer in vivo.  相似文献   

20.
Mitochondrial generation of reactive oxygen species (ROS) is increased in mice with fatty livers induced by genetic obesity, chronic consumption of ethanol, or methionine/choline-deficient diets. Both nuclear and mitochondrial (mt) DNA are targets for ROS-induced damage and accumulate hydroxylated bases, such as 8-hydroxy-2'-deoxyguanosine (8-oxoG) and base substitution of adenine with 8-oxoG (A*8-oxoG), that introduce mutations that promote cancer as well as cell death. The mammalian homolog of the bacterial DNA mismatch repair enzyme MutY (MYH) removes A*8-oxoG from nuclear and mtDNA, reduces 8-oxoG accumulation, and restores genomic stability after ROS exposure. Cumulative damage to mtDNA occurs as fatty liver disease progresses. Therefore, differences in hepatic MYH activity may influence the severity of fatty liver disease. To evaluate this hypothesis, we compared mtH2O2 production, MYH expression, oxidative DNA damage, and hepatocyte death in healthy mice and different mouse models of fatty liver disease. The results show that diverse causes of steatohepatitis increase mtROS production, limit repair of mtDNA, and oxidatively damage DNA. However, there are important differences in the DNA repair response to oxidant stress among mouse models of fatty liver disease. Independent of the degree of mtROS generation, models with the least MYH exhibit the greatest accumulation of 8-oxoG and the most hepatocyte death. These findings raise the intriguing possibility that inherited or acquired differences in DNA repair enzyme activity may underlie some of the interindividual differences in fatty liver disease outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号