共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Following local application of kainic acid, changes in the contents of Na+ , K+ , Ca2+ , and Mg2+ of the striatum, cerebellum, and hippocampus of the rat were observed at various times after surgery. Within 1 h the levels of K+ decreased 20% whereas the levels of Na+ and Ca2+ increased at least 50% and 20%, respectively. These changes persisted for more than 8 weeks. Ca2+ levels rose further, to more than 10-fold during 8 weeks. The Mg2+ levels were slightly and only transiently decreased. Unilateral injections of kainate into the striatum affected the contents of these cations not only in this area, but also in the overlying cerebral cortex, the olfactory tubercle, and the ipsilateral substantia nigra. The Ca2+ increases were less when rats were kept on a diet deficient in Ca2+ and vitamin D. 45 Ca2+ , intravenously administered, accumulated significantly more in the kainate-lesioned striatum and substantia nigra than in the homotopic contralateral areas. Electron microscopic examination of the localization of Ca2+ with the oxalate-pyroantimonate technique showed the appearance of extracellularly located deposits and the accumulation of Ca2+ in (possibly degenerating) myelinated axons in kainate-lesioned striata. This study provides evidence that calcification of cerebral tissue is closely associated with neurodegenerative processes and shows that kainate may serve as a tool to elucidate the mechanism of brain calcification. The results are discussed in relation to idiopathic calcinosis (striopallidodentate calcinosis, Fahr's disease). 相似文献
2.
Mitochondrial Calcium Transport and Mitochondrial Dysfunction After Global Brain Ischemia in Rat Hippocampus 总被引:1,自引:0,他引:1
Peter Racay Zuzana Tatarkova Maria Chomova Jozef Hatok Peter Kaplan Dusan Dobrota 《Neurochemical research》2009,34(8):1469-1478
Here we report effect of ischemia-reperfusion on mitochondrial Ca2+ uptake and activity of complexes I and IV in rat hippocampus. By performing 4-vessel occlusion model of global brain ischemia,
we observed that 15 min ischemia led to significant decrease of mitochondrial capacity to accumulate Ca2+ to 80.8% of control whereas rate of Ca2+ uptake was not significantly changed. Reperfusion did not significantly change mitochondrial Ca2+ transport. Ischemia induced progressive inhibition of complex I, affecting final electron transfer to decylubiquinone. Minimal
activity of complex I was observed 24 h after ischemia (63% of control). Inhibition of complex IV activity to 80.6% of control
was observed 1 h after ischemia. To explain the discrepancy between impact of ischemia on rate of Ca2+ uptake and activities of both complexes, we performed titration experiments to study relationship between inhibition of particular
complex and generation of mitochondrial transmembrane potential (ΔΨm). Generation of a threshold curves showed that complex I and IV activities must be decreased by approximately 40, and 60%,
respectively, before significant decline in ΔΨm was documented. Thus, mitochondrial Ca2+ uptake was not significantly affected by ischemia-reperfusion, apparently due to excess capacity of the complexes I and IV.
Inhibition of complex I is favourable of reactive oxygen species (ROS) generation. Maximal oxidative modification of membrane
proteins was documented 1 h after ischemia. Although enhanced formation of ROS might contribute to neuronal injury, depressed
activities of complex I and IV together with unaltered rate of Ca2+ uptake are conditions favourable of initiation of other cell degenerative pathways like opening of mitochondrial permeability
transition pore or apoptosis initiation, and might represent important mechanism of ischemic damage to neurones. 相似文献
3.
Arthur J. L. Cooper William A. Pulsinelli Thomas E. Duffy 《Journal of neurochemistry》1980,35(5):1242-1245
Thirty minutes of total cerebral ischemia (decapitation) decreased total glutathione (GSH + GSSG) by 7% but had no detectable effect on the concentration of oxidized glutathione (GSSG), reduced ascorbate, or total ascorbate. In a model of reversible, bilateral hemispheric ischemia (four-vessel occlusion) no changes in glutathione or ascorbate were detected after 30 min of ischemia. During 24 h of reperfusion following such an insult no detectable change in total ascorbate, reduced ascorbate, or oxidized glutathione was noted; however, total brain glutathione declined by 25%. The findings are discussed in relation to the hypothesis that the deleterious effects of ischemia are due to an increase in free radical production which in turn leads to increased lipid peroxidation. 相似文献
4.
The effects of the polyamines spermine and spermidine on rat brain mitochondrial calcium transport were examined using a variety of techniques for measuring the kinetics of calcium uptake and the buffering capabilities of isolated mitochondria. Spermine both increased the rate of calcium accumulation and decreased the set-point to which isolated mitochondria buffer free calcium concentration. In the presence of physiological concentrations of sodium and magnesium, spermine lowered the extramitochondrial calcium level to approximately 0.3 microM, a value close to the resting intracellular calcium concentration. The effect of polyamines was concentration dependent, with a half-maximal effect of spermine observed at approximately 0.1-0.4 mM (respiratory substrate dependent), whereas spermidine was approximately 10 times less potent. Calcium transport by hippocampal mitochondria was stimulated markedly more by spermine than was calcium transport by mitochondria isolated from brainstem. The stimulatory effect of spermine was not due to an increase in the transport of respiratory substrates inside the mitochondria nor to an effect on the enzymes using these respiratory substrates. An examination of the effect of spermine on the kinetics of calcium uptake indicated that spermine increased calcium uptake maximally at low calcium concentrations. Beyond that level, the stimulatory effect of spermine decreases, and spermine can even inhibit calcium uptake. These results are in good agreement with previous reports on the effects of polyamines on calcium transport in mitochondria from peripheral tissue. They support the hypothesis that spermine increases the rate of calcium uptake by mitochondria by increasing the affinity of the uniporter for calcium.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Regional Distribution of Calmodulin Activity in Rat Brain 总被引:1,自引:1,他引:1
L-W. Zhou J. A. Moyer† E. A. Muth† B. Clark† M. Palkovits B. Weiss 《Journal of neurochemistry》1985,44(5):1657-1662
Calmodulin activity in 68 discrete areas of rat brain, obtained by micropunch technique, was assessed by its capacity to activate a calmodulin-sensitive form of phosphodiesterase. In general, the activity of calmodulin was higher in the telencephalon, limbic system, and hypothalamus than in the mesencephalon, pons, cerebellum, and medulla. However, there were substantial differences in calmodulin activity in discrete nuclei of each region. The regional distribution of calmodulin activity in rat brain does not appear to correlate with that of any of the known putative neurotransmitters or peptides. 相似文献
6.
Oxypurinol-Enhanced Postischemic Recovery of the Rat Brain Involves Preservation of Adenine Nucleotides 总被引:1,自引:0,他引:1
J. W. Phillis L. M. Perkins M. Smith-Barbour M. H. O'Regan 《Journal of neurochemistry》1995,64(5):2177-2184
Abstract: The present study investigated the effect of the administration of oxypurinol (40 mg/kg), an inhibitor of xanthine oxidase, on adenosine and adenine nucleotide levels in the rat brain during ischemia and reperfusion. The brains of the animals were microwaved before, at the end of a 20-min period of cerebral ischemia, and after 5, 10, 45, and 90 min of reperfusion. Cerebral ischemia was elicited by four-vessel occlusion with arterial hypotension to 45–50 mm Hg. Adenosine and adenine nucleotide levels in the oxypurinol-pretreated (administered intravenously 20 min before ischemia) rats were compared with those in nontreated animals exposed to the same periods of ischemia and reperfusion. Oxypurinol administration resulted in significantly elevated ATP levels at the end of ischemia and 5 min after ischemia, but not at 10 min after ischemia. ADP levels were also elevated, in comparison with those in the control rats, at the end of the ischemic period. Conversely, AMP levels were significantly reduced at the end of ischemia and during the initial (5 min) period of reperfusion. Adenosine levels were lower in oxypurinol-treated rats, during ischemia, and in the initial reperfusion phase. Oxypurinol administration resulted in a significant increase in the energy charge both during ischemia and after 5 min of reperfusion. Physiological indices, namely, time to recovery of mean arterial blood pressure and time to onset of respiration, were also shortened in the oxypurinol-treated animals. These beneficial effects of oxypurinol may have been a result of its purine-sparing (salvage) effects and of its ability to inhibit free radical formation by the enzyme xanthine oxidase. Preservation of high-energy phosphates during ischemia likely contributes to the cerebroprotective potency of oxypurinol. 相似文献
7.
James R. Goldenring Laura C. Otis Robert K. Yu Robert J. DeLorenzo 《Journal of neurochemistry》1985,44(4):1229-1234
The effects of gangliosides on phosphorylation were studied in rat brain membrane. Gangliosides stimulated phosphorylation only in the presence of Ca2+ with major phosphoproteins of 45,000, 50,000, 60,000, and 80,000 daltons and high-molecular-weight species. In addition, gangliosides inhibited the phosphorylation of three proteins with molecular weights of 15,000, 20,000, and 78,000 daltons. The two low-molecular-weight proteins comigrated with rat myelin basic proteins. Ganglioside stimulation was dependent on the formation of a Ca2+-ganglioside complex since the calcium salt of gangliosides stimulated phosphorylation maximally. Disialo and trisialo gangliosides were more potent stimulators of kinase activity than the monosialo GM1 X GD1a was the most potent activator tested. Asialo-GM1, cerebroside, sialic acid, neuraminyllactose, sulfatide, and the acidic phospholipids phosphatidylserine and phosphatidylinositol did not stimulate kinase activity. The Ca2+-dependent, ganglioside-stimulated phosphorylation was qualitatively similar to the pattern for calmodulin-dependent phosphorylation. However, while calmodulin-dependent kinase activity was inhibited with an IC50 of 10 microM trifluoperazine, ganglioside-stimulated kinase was inhibited with an IC50 of 200 microM trifluoperazine. These results indicate that gangliosides have complex effects on membrane-associated kinase activities and suggest that Ca2+-ganglioside complexes are potent stimulators of membrane kinase activity. 相似文献
8.
Regional Distribution of Catalase in the Adult Rat Brain 总被引:6,自引:3,他引:3
Catalase activity was measured in 11 areas of perfused adult rat brain. The hypothalamus and substantia nigra contained the highest activities. The corpus callosum. a white-matter structure, contained intermediate activity. The caudate-putamen and frontal cortex contained the lowest activities. Regional catalase bears some relationship to the reported distribution of microperoxisomes, but considerable activity is present in areas with few microperoxisomes. Catalase may function as one of the systems detoxifying H2O2 formed in CNS amine metabolism. 相似文献
9.
Vincent A. Murphy Quentin R. Smith Stanley I. Rapoport 《Journal of neurochemistry》1988,51(6):1777-1782
Male Fischer-344 rats, 21 days old, were fed diets containing 0 (LOD), 2,200 (CONT), or 440,000 (HID) international units of vitamin D3 per kilogram for 12 weeks. [Ca] was measured in plasma, CSF, brain, and choroid plexus. In addition, 45Ca and 36Cl transfer coefficients (KCa and KCl) for uptake from blood into CSF and brain were determined. Although plasma ionized [Ca]s in LOD and HID rats were 50% and 136%, respectively, of values in CONT animals, CSF and brain [Ca]s ranged from only 85% to 110% of respective CONT values. Choroid plexus [Ca] was increased by 37% after HID diet, but was decreased only 10% after LOD. KCa values at CSF, parietal cortex, and pons-medulla were negatively correlated with plasma ionized [Ca], whereas KCl values at CSF and brain were not different between the diet groups. The findings demonstrate that central nervous system [Ca] is maintained during chronic hypo- or hypercalcemia by saturable transport of Ca at brain barrier membranes. This transport does not seem to involve modulation by 1,25-dihydroxyvitamin D3. 相似文献
10.
Deborah C. Mash† John Pablo Donna D. Flynn† Simon M. N. Efange‡ William J. Weiner 《Journal of neurochemistry》1990,55(6):1972-1979
The mechanism of calcium transport across the plasma membrane of chromaffin cells was studied using plasma membrane vesicles prepared from cells of adrenal medulla. Purification of the plasma membrane was about 30-fold, based on the alpha-bungarotoxin binding activity. The isolated membrane vesicles have both Na+/Ca2+ exchange and calcium pump activities. The Na+/Ca2+ exchange activity increased with the free calcium concentration and was not saturated at 1 mM, the highest concentration tried. The K1/2 of the calcium pump for calcium is 0.06 microM. Part of the Na+/Ca2+ exchange activity was inhibited by preincubation of the membrane vesicles with veratridine and the effect of veratridine was reversed by tetrodotoxin. The calcium taken up by the calcium pump was released by 0.005% saponin, but was not affected by oxalate. The calcium taken up by the calcium pump was released by exchanging with the external sodium, which suggests that the two calcium transport systems are located on the same population of membrane vesicles. The above evidence indicates that both calcium transport activities are located on the plasma membrane and not on contaminating organelle membranes. The significance of the two calcium transport systems in regulation of cytosolic calcium concentration of chromaffin cells is discussed. 相似文献
11.
Abstract: The effects of kainic acid were investigated in preparations of rat brain synaptosomes. It was found that kainic acid inhibited competitively the uptake of d -[3 H]aspartate, with a K i of approximately 0.3 m m . Kainic acid also caused release of two excitatory amino acid neurotranstnitters, aspartate and glutamate, in a time- and concentration-dependent manner, but had no effect on the content of γ-aminobutyric acid. Concomitant with the release of aspartate and glutamate, depolarization of the synaptosomal membrane and an increase in intracellular calcium were observed, with no measurable change in the concentration of internal sodium ions. The increase in intrasynaptosomal calcium and decrease in transmem-brane electrical potential were prevented by the addition of glutamate, whereas the kainate-induced release of ra-dioactive aspartate was substantially inhibited by lowering the concentration of calcium in the external medium. It is postulated that kainic acid reacts with a class of glutamate receptors located in a subpopulation of synaptosomes, presumably derived from the glutamatergic and aspartatergic neuronal pathways, which possesses high-affinity uptake system(s) for glutamate and/or aspartate. Activation of these receptors causes opening of calcium channels, influx of calcium into the synaptosomes, and depolarization of the synaptosomal plasma membrane with consequent release of amino acid neurotransmitters. 相似文献
12.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain. 相似文献
13.
Lectin-Induced Enhancement of Voltage-Dependent Calcium Flux and Calcium Channel Antagonist Binding 总被引:1,自引:0,他引:1
David A. Greenberg Celia L. Carpenter Robert O. Messing 《Journal of neurochemistry》1987,48(3):888-894
Concanavalin A (Con A), a tetravalent lectin with preferential affinity for mannosyl and glucosyl residues of membrane glycoconjugates, increased K+ depolarization-evoked uptake of 45Ca2+ in the PC12 neural cell line. Enhancement of uptake by Con A was concentration dependent, with maximal (24%) stimulation at 100 micrograms/ml of Con A, and was preferentially inhibited by mannoside and glucoside. Succinyl-Con A, a divalent analog with reduced biological potency, increased uptake by only 7%. The effect of Con A on 45Ca2+ uptake was dependent on membrane depolarization, was abolished by ionic Ca2+ channel blockers and organic Ca2+ channel antagonists, and was accompanied by an equivalent increase in Ca2+ channel 3H-labeled antagonist binding, observations suggesting that the voltage-dependent Ca2+ channel was the site of Ca2+ entry. The mechanism for enhancement of 45Ca2+ uptake by Con A appeared to be separate from that used by the Ca2+ channel agonist BAY K 8644 and independent of that involved in Ca2+ channel regulation by phorbol esters. These findings suggest that voltage-dependent Ca2+ channels may link cell surface carbohydrate interactions with intracellular effector processes. 相似文献
14.
Andrzej Szutowicz Hanna Bielarczyk Yuri Kisielevski Agnieszka Jankowska Beata Madziar Maria Tomaszewicz 《Journal of neurochemistry》1998,71(6):2447-2453
Abstract: Al complexes are known to accumulate in extra- and intracellular compartments of the brain in the course of different encephalopathies. In this study possible effects of Al accumulation in the cytoplasmic compartment on mitochondrial metabolism were investigated. Al, like Ca, inhibited pyruvate utilization as well as citrate and oxoglutarate accumulation by whole brain mitochondria. Potencies of Ca2+ total effects were 10–20 times stronger than those of Al. Al decreased mitochondrial acetyl-CoA content in a concentration-dependent manner, along with an equivalent rise of free CoA level, whereas Ca caused loss of both intermediates from mitochondria. In the absence of Pi in the medium, Ca had no effect on mitochondrial metabolism, whereas Al lost its ability to suppress pyruvate utilization and acetyl-CoA content in Ca-free conditions. Verapamil potentiated, whereas ruthenium red reversed, Ca-evoked suppression of mitochondrial metabolism. On the other hand, in Ca-supplemented medium, Al partially overcame the inhibitory influence of verapamil. Accordingly, verapamil increased mitochondrial Ca levels much more strongly than Al. However, Al partially reversed the verapamil-evoked rise of Ca2+ total level. These data indicate that Al accumulated in cytoplasm in the form of the Al(PO4 )OH− complex may inhibit mitochondrial functions by an increase of intramitochondrial [Ca2+ ]total resulting from the Al-evoked rise of cytoplasmic [Ca2+ ]free , as well as from inhibitory interference with the verapamil binding site on the Na+ /Ca2+ antiporter. 相似文献
15.
Phosphorylation-Mediated Changes in Pyruvate Dehydrogenase Activity Influence Pyruvate-Supported Calcium Accumulation by Brain Mitochondria 总被引:8,自引:7,他引:1
Abstract: Changes in the activity of pyruvate dehydrogenase [pyruvate: lipoamide oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1, PDH], elicited by inhibition of the phosphorylation of its 40,000 Mr α-subunit, were compared with changes in pyruvate-supported calcium accumulation by rat brain mitochondria. Dichloroacetate (DCA) produces concentration-dependent inhibition of the phosphorylation of intramitochondrial PDH a-subunit, which is accompanied by stimulation of PDH activity and calcium accumulation. DCA did not affect succinate- or ATP-supported mitochondrial calcium accumulation. The concentration of DCA giving half-maximal inhibition of the phosphorylation was almost identical to that giving half-maximal stimulation of PDH activity and calcium accumulation. PDH activity and pyruvate-supported calcium accumulation showed similar dependence on pyruvate concentration with respective apparent affinities for pyruvate of 40 μ m and 30 μ m , and both activities exhibited positive cooperativity. DCA modified only the maximal activity of PDH or the maximal calcium accumulation without changing either the apparent affinities for pyruvate or calcium or the Hill coefficients. These data provide evidence that calcium accumulation by mitochondria is tightly linked to PDH activity and that changes in the phosphorylation of the PDH α-subunit can be reflected in changes in the calcium-buffering ability of mitochondria. This suggests a possible mechanism by which a variety of manipulations, such as repetitive synaptic stimulation, can alter the regulation of internal calcium levels. 相似文献
16.
A. Toledo R. Rodriguez J. Sabriá J. Rodriguez I. Blanco 《Journal of neurochemistry》1991,56(2):380-384
In a previous work we have shown that histidine decarboxylase (HD) activity is found in a soluble and a membrane-bound form. A major part (82%) of the membrane-bound HD activity in the crude mitochondrial fraction (P2) was present in the synaptic plasma membrane-containing subfraction. Physiological concentrations of Ca2+ had no direct effect on HD activity but caused a solubilization of approximately 50% of membrane-bound HD in the P2 fraction. Mg2+ had similar but lower effects (20% solubilization) than Ca2+. Incubation with depolarizing concentrations of K+ in the presence of 1 mM CaCl2 caused a significant (30%) solubilization of HD. 相似文献
17.
Timothy S. Brannan Howard S. Maker Cipora Weiss Gerald Cohen 《Journal of neurochemistry》1980,35(4):1013-1014
Glutathione peroxidase activity was measured in 10 areas of perfused adult rat brain with the use of a fluorometric assay coupled to NADPH oxidation. The caudate-putamen and the substantia nigra had the highest activities. Cortical areas and several nuclear areas had somewhat lower activity. Activity was lowest in a white matter structure (corpus callosum). High activity of glutathione peroxidase may be related to the need to reduce hydrogen peroxide arising in the course of monoamine metabolism. 相似文献
18.
A method is described to measure directly in rat brain the activity of pyruvate dehydrogenase kinase (PDHa kinase; EC 2.7.1.99), which catalyzes the inactivation of pyruvate dehydrogenase complex (PDHC, EC 1.2.4.1, EC 2.3.1.12, and EC 1.6.4.3). The activity showed the expected dependence on added ATP and divalent cation, and the expected inhibition by dichloroacetate, pyruvate, and thiamin pyrophosphate. These results, and the properties of pyruvate dehydrogenase phosphate phosphatase (EC 3.1.3.43), indicate that the mechanisms of control of phosphorylation of PDHC seem qualitatively similar in brain to those in other tissues. Regionally, PDHa kinase is more active in cerebral cortex and hippocampus, and less active in hypothalamus, pons and medulla, and olfactory bulbs. Indeed, the PDHa kinase activity in olfactory bulbs is uniquely low, and is more sensitive to inhibition by pyruvate and dichloroacetate than that in the cerebral cortex. Thus, there are significant quantitative differences in the enzymatic apparatus for controlling PDHC activity in different parts of the brain. 相似文献
19.
Previous work has shown that incubation of hippocampal slices in medium without added calcium markedly attenuates the capacity of vasoactive intestinal peptide (VIP) to elevate cyclic AMP levels. The present studies examined the mechanism that confers calcium dependence on VIP stimulation of cyclic AMP accumulation in hippocampal slices. Calcium dependence was apparent immediately on slice preparation and was reversible only if calcium ions were added back very early during slice incubation (within 5 min). The cyclic AMP response to VIP was not abolished by preincubating slices in 100 microM adenosine, suggesting that calcium-dependent, VIP-induced release of adenosine does not mediate VIP elevation of cyclic AMP. VIP-stimulated cyclic AMP accumulation was not decreased by agents that block calcium influx (verapamil, nifedipine, magnesium ions), or by calmodulin antagonists (trifluoperazine, calmidozolium). In fact both verapamil (100 microM) and magnesium (14 mM) augmented VIP stimulation of cyclic AMP generation. Incubation of slices with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine (MIX) did not affect VIP activation of cyclic AMP accumulation if slices were incubated without added calcium, but MIX did enhance VIP elevation of cyclic AMP content in slices incubated with calcium. Thus calcium dependence of the cyclic AMP response to VIP in hippocampal slices is unlikely to result from VIP-dependent calcium influx, from interactions with calmodulin, or from calcium-inhibited phosphodiesterase(s).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Thomas P. Davis Terrence J. Gillespie Pierre N. M. Konings 《Journal of neurochemistry》1992,58(2):608-617
Regional differences in neurotensin metabolism and the peptidases involved were studied using intact, viable rat brain microslices and specific peptidase inhibitors. Regional brain slices (2 mm x 230 microns) prepared from nucleus accumbens, caudate-putamen, and hippocampus were incubated for 2 h in the absence and presence of phosphoramidon, captopril, N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Phe-p-aminobenzoate, and o-Phenanthroline, which are inhibitors of neutral endopeptidase 24.11, angiotensin-converting enzyme, metalloendopeptidase 24.15, and nonspecific metallopeptidases, respectively. Neurotensin-degrading proteolytic activity varied by brain region. Significantly less (35.0 +/- 1.6%) neurotensin was lost from hippocampus than from caudate-putamen (45.4 +/- 1.0%) or nucleus accumbens (47.8 +/- 1.1%) in the absence of inhibitors. Peptidases responsible for neurotensin metabolism on brain slices were found to be predominantly metallopeptidases. Metalloendopeptidase 24.15 is of major importance in neurotensin metabolism in each brain region studied. The relative contribution of specific peptidases to neurotensin metabolism also varied by brain region; angiotensin-converting enzyme and neutral endopeptidase 24.11 activities were markedly elevated in the caudate-putamen as compared with the nucleus accumbens or hippocampus. Interregional variation in the activity of specific peptidases leads to altered neurotensin fragment formation. The brain microslice technique makes feasible regional peptide metabolism studies in the CNS, which are impractical with synaptosomes, and provides evidence for regional specificity of neurotensin degradation. 相似文献