首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that mediate biomembrane shape transformations are of considerable interest in cell biology. Recent in vitro experiments show that the chemical transformation of minor membrane lipids can induce dramatic shape changes in biomembranes. Specifically, it was observed that the addition of DOPA to DOPE has no effect on the stability of the bilayer structure of the membrane. In contrast, the addition of LPA to DOPE stabilizes the bilayer phase of DOPE, increasing the temperature of a phase transition from the bilayer to the inverted hexagonal phase. This result suggests that the chemical conversion of DOPA to LPA is sufficient for triggering a dramatic change in the shape of biomembranes. The LPA/DOPA/DOPE mixture of lipids provides a simple model system for understanding the molecular events driving the shape change. In this work, we used coarse-grained molecular dynamics simulations to study the phase transitions of this lipid mixture. We show that despite the simplicity of the coarse-grained model, it reproduces the experimentally observed phase changes of: 1), pure LPA and DOPA with respect to changes in the concentration of cations; and 2), LPA/DOPE and DOPA/DOPE mixtures with respect to temperature. The good agreement between the model and experiments suggests that the computationally inexpensive coarse-grained approach can be used to infer macroscopic membrane properties. Furthermore, analysis of the shape of the lipid molecules demonstrates that the phase behavior of single-lipid systems is consistent with molecular packing theory. However, the phase stability of mixed lipid systems exhibits significant deviations from this theory, which suggests that the elastic energy of the lipids, neglected in the packing theory, plays an important role.  相似文献   

2.
Oxidative stress results from the attack by free radicals of several cellular targets (proteins, DNA and lipids). The cell equilibrium is a direct consequence of the pro-/antioxidant balance. In order to understand the physiological processes involved in oxidative stress, we followed oxidation of unsaturated lipids using a biomimetic system: Langmuir monolayers. The oxidation mode chosen was UV-irradiation and the lipid model was a polyunsaturated phospholipid: 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC). The monomolecular film technique was used to measure membrane rheology before and after UV-irradiation. We showed that the UV-irradiation of a DLPC monomolecular film led to a molecular area and surface elasticity modulus decrease that attests to the apparition of new molecular species at the air-water interface. The antioxidant effect of a synthetic plasmalogen (1-O-(1'-(Z)-hexadecenyl)-2-O-oleoyl-sn-glycero-3-phosphocholine or P(PLM)OPE) was tested on the oxidation of DLPC. Indeed, for about 25% mol P(PLM)OPE in mixed DLPC/P(PLM)OPE monolayers, a complete inhibition of the molecular area and the surface elasticity modulus decreases was observed in our experimental conditions. Lower P(PLM)OPE quantities delayed but did not prevent the DLPC oxidation in mixed monolayers.  相似文献   

3.
The effect of exogeneous (egg) lecithin on peroxidation of microsomal lipids was studied with the view of elucidating the role of various components of lipid substrate in the overall oxidation rate of the lipids. The following processes were studied a) NADPH-dependent microsomal lipid peroxidation in the presence of lecithin; b) ascorbate-dependent microsomal lipid peroxidation in the presence of lecithin; c) oxidation of lipid mixture, isolated from the microsomes, and that of lecithin in the presence of the Fe2+ + ascorbate system; 4) oxidation of lecithin induced by the Fe2+ + ascorbate system. It was found that in the presence of exogeneous lecithin the oxidation of microsomal lipids in inhibited, which is probably due to the peculiarities of lecithin oxidation. It was shown that the specific rate of lecithin oxidation is decreased with an increase in lecithin concentration. Possible mechanisms of lecithin effect on microsomal lipid peroxidation are discussed.  相似文献   

4.
Lipid peroxidation plays an important role in cell membrane damage. We investigated the effect of lipid peroxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayers using molecular dynamics simulations. We focused on four main oxidation products of linoleic acid with either a hydroperoxide or an aldehyde group: 9-trans, cis-hydroperoxide linoleic acid, 13-trans, cis-hydroperoxide linoleic acid, 9-oxo-nonanoic acid, and 12-oxo-9-dodecenoic acid. These oxidized chains replaced the sn-2 linoleate chain. The properties of PLPC lipid bilayers were characterized as a function of the concentration of oxidized lipids, with concentrations from 2.8% to 50% for each oxidation product. The introduction of oxidized functional groups in the lipid tail leads to an important conformational change in the lipids: the oxidized tails bend toward the water phase and the oxygen atoms form hydrogen bonds with water and the polar lipid headgroup. This conformational change leads to an increase in the average area per lipid and, correspondingly, to a decrease of the bilayer thickness and the deuterium order parameters for the lipid tails, especially evident at high concentrations of oxidized lipid. Water defects are observed in the bilayers more frequently as the concentration of the oxidized lipids is increased. The changes in the structural properties of the bilayer and the water permeability are associated with the tendency of the oxidized lipid tails to bend toward the water interface. Our results suggest that one mechanism of cell membrane damage is the increase in membrane permeability due to the presence of oxidized lipids.  相似文献   

5.
Stratum corneum lipids are relatively complex, and there is little detailed understanding of their chemical and physical properties at the molecular level. Large unilamellar vesicles (LUVs) with lipid compositions similar to those of stratum corneum were prepared at pH 9 with commercially available lipids. This system was used as a model system for molecular studies of stratum corneum lipids. LUVs were chosen as the model system as they are comparatively more stable and can be characterized more quantitatively in terms of lipid concentration, surface area, and volume than model systems such as lipid mixture suspensions, lipid films, and small unilamellar vesicles. Results from freeze-fracture and cryo electron microscopy studies of our LUVs showed spherical vesicles. Quasi-elastic light scattering measurements revealed a narrow size distribution, centering around 119 nm. At room temperature, the LUVs were stable for several weeks at pH 9 and for more than 15 h but less than 24 h at pH 6. Differential scanning calorimetry measurements indicated broad endothermic transitions centered near 60-65 degrees C, closely matching the transition temperature reported for stratum corneum lipid extracts. Spin probes, 5-doxylstearic acid and 12-doxylstearic acid, were used for electron paramagnetic resonance (EPR) studies of the molecular dynamics of the lipids. EPR results indicated more restricted motion near the polar headgroup region than near the center of the alkyl chain region. Motional profiles of the spin labels near the polar headgroup and within the alkyl chain region in the LUVs were obtained as a function of temperature, ranging from 25 to 90 degrees C. We also found that the partitioning between the lipid and aqueous phases for each spin probe was temperature dependent and was generally correlated with phase transitions observed by differential scanning calorimetry and with alkyl chain mobility observed by EPR. Thus, this LUV system is well suited for additional molecular studies under different experimental conditions.  相似文献   

6.
The objective of this study was to assess the dynamics of oxidative damage to cellular macromolecules such as proteins, lipids and DNA under conditions of oxidative stress triggering early stages of estrogen-dependent carcinogenesis. A rodent model of carcinogenesis was used. Syrian hamsters were sacrificed after 1, 3, 5 h and one month from the initial implantation of estradiol. Matching control groups were used. Kidneys as target organs for estradiol-mediated oxidative stress were excised and homogenized for biochemical assays. Subcellular fractions were isolated. Carbonyl groups (as a marker of protein oxidation) and lipid hydroxyperoxides were assessed. DNA was isolated and 8-oxodGuo was assessed. Electron paramagnetic resonance spectroscopy was used to confirm the results for lipid peroxidation. Exposition to estradiol in the rodent model leads to damage of macromolecules of the cell, including proteins and DNA, but not lipids. Proteins appear to be the primary target of the damage but are closely followed by DNA. It has previously been speculated that protein peroxides can increase DNA modifications. This time sequence was observed in our study. Nevertheless, the direct relation between protein and DNA damage still remains unsolved.  相似文献   

7.
A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05) higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%–133% and 35.22%–59.57% higher amount of lipids than the reference strain A-4 (WT) under submerged (SmF) conditions and solid-state (SSF) conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.  相似文献   

8.
To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean, obese and T2D subjects, chronic exposed for PA. Complete oxidation from endogenous PA was reduced in diabetic and obese compared to lean myotubes while exogenous PA oxidation was reduced in diabetic compared to lean myotubes. The complete/incomplete ratio was significantly reduced in diabetic myotubes both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between β-oxidation and citric acid cycle in obese diabetic myotubes.  相似文献   

9.
Most studies reported until now on the magnetically alignable system formed by the binary mixtures of long- and short-chain lipids were based on the mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (D14PC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (D6PC) lipids. We have recently shown that a large part of the phase diagrams of this lipid mixture could be understood by taking into account the partial miscibility between the long-chain lipids and the short-chain lipids when the sample was heated above the melting transition temperature (Tm) of the long-chain lipids. In this work, we show by modifying the chain length of either one of the two lipids that it is possible to control their miscibility and thus the intervals of temperature and composition where spontaneous alignment is observed in a magnetic field. By using 31P NMR, we demonstrate that the very special properties of such binary lipid mixtures are correlated with the propensity for short-chain lipids to diffuse into the bilayer regions. We also show that lipid mixtures with comparable properties can be formed with unsaturated lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).  相似文献   

10.
Fluidity of membrane lipids of shoot and root tissue and of chloroplasts from young wheat seedlings of contrasting freezing tolerance was investigated by measuring the motion and order parameters after spin labeling. A striking similarity was observed in membrane lipid fluidity of the five cultivars grown at 22 C. After cold hardening by growth at 2 C, a small change in membrane lipid fluidity was observed, but this was not correlated with the development of freezing tolerance, and there was no alteration in the transition temperature of membrane lipids. The results show that neither changes in membrane lipid fluidity nor transition temperature are a necessary feature of cold acclimation in wheat.  相似文献   

11.
The goal of this work was to correlate oxidative stress caused by reactive oxygen species (ROS) and DNA damage with classic semen parameters in spermatozoa and seminal plasma of fertile and subfertile stallions. Oxidation was measured in both lipids and proteins, using the thiobarbituric acid reactive species (TBARS) assay and the DNPH carbonyl groups assay, respectively. Sperm DNA damage was monitored using the TUNEL assay. These parameters were monitored in samples obtained during the breeding and the non-breeding seasons. In general, fertile stallions showed better classical semen parameters, and those parameters improved from the non-breeding to the breeding season, although an increase in sperm production was accompanied by a decrease in the semen quality from subfertile stallions in the breeding season. In terms of oxidation levels we found that there were clear differences whether lipids or proteins were considered. In the breeding season there seemed to be a tendency towards normalizing lipid oxidation in spermatozoa and seminal plasma, and protein oxidation in the seminal plasma, of both fertile and subfertile animals. Thus, differences monitored in the non-breeding season were no longer visible. Interestingly, a higher level of protein oxidation was found in the sperm of fertile animals in the breeding season. Considering that there were positive correlations between sperm protein oxidation and sperm motility and vitality, these results suggests that the oxidation of semen proteins may be important for sperm function. On the other hand, lipid oxidation in the seminal plasma seemed to be a general indicator for sperm damage. In the non-breeding season positive correlations between lipid and protein oxidation levels in both sperm and seminal plasma and several defects in sperm function were found, but only for subfertile animals, thus suggesting that lipid and protein oxidation may aid in the identification of subfertile stallions during the non-breeding season. Levels of ROS production never seemed to result in compromised sperm DNA integrity, indicating that measurements were within physiological levels and/or that there is an efficient antioxidant activity in stallion sperm cells.  相似文献   

12.
Fourier transform infrared spectroscopy was used to characterize the interaction of the cationic lipids 1,2-dioleoyl-3-trimethylammonium-propane and dioctadecyldimethylammonium bromide with plasmid DNA. The effect of incorporating the neutral colipids cholesterol and dioleoylphosphatidylethanolamine on this interaction was also examined. Additionally, dynamic and phase analysis light scattering were used to monitor the size and zeta potential of the resulting complexes under conditions similar to the Fourier transform infrared measurements. Results suggest that upon interaction of cationic lipids with DNA, the DNA remains in the B form. Distinct changes in the frequency of several infrared bands arising from the DNA bases, however, suggest perturbation of their hydration upon interaction with cationic lipids. A direct interaction of the lipid ammonium headgroup with and dehydration of the DNA phosphate is observed when DNA is complexed with these lipids. Changes in the apolar regions of the lipid bilayer are minimal, whereas the interfacial regions of the membrane show changes in hydration or molecular packing. Incorporation of helper lipids into the cationic membranes results in increased conformational disorder of the apolar region and further dehydration of the interfacial region. Changes in the hydration of the DNA bases were also observed as the molar ratio of helper lipid in the membranes was increased.  相似文献   

13.
Unsaturated lipid oxidation is a fundamental process involved in different aspects of cellular bioenergetics; dysregulation of lipid oxidation is often associated with cell aging and death. To study how lipid oxidation affects membrane biophysics, we used a chlorin photosensitizer to oxidize vesicles of various lipid compositions and degrees of unsaturation in a controlled manner. We observed different shape transitions that can be interpreted as an increase in the area of the targeted membrane followed by a decrease. These area modifications induced by the chemical modification of the membrane upon oxidation were followed in situ by Raman tweezers microspectroscopy. We found that the membrane area increase corresponds to the lipids’ peroxidation and is initiated by the delocalization of the targeted double bonds in the tails of the lipids. The subsequent decrease of membrane area can be explained by the formation of cleaved secondary products. As a result of these area changes, we observe vesicle permeabilization after a time lag that is characterized in relation with the level of unsaturation. The evolution of photosensitized vesicle radius was measured and yields an estimation of the mechanical changes of the membrane over oxidation time. The membrane is both weakened and permeabilized by the oxidation. Interestingly, the effect of unsaturation level on the dynamics of vesicles undergoing photooxidation is not trivial and thus carefully discussed. Our findings shed light on the fundamental dynamic mechanisms underlying the oxidation of lipid membranes and highlight the role of unsaturations on their physical and chemical properties.  相似文献   

14.
Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflower seed oil were fed to rats and the effect on heart mitochondrial lipid composition and membrane-associated enzyme behaviour was determined. The dietary lipid treatments did not change the overall level of membrane lipid unsaturation but did alter the proportion of various unsaturated fatty acids. This led to a change in the omega 6/omega 3 unsaturated fatty acid ratio, which was highest in the sunflower seed oil fed rats. Arrhenius plots of the mitochondrial membrane associated enzymes succinate-cytochrome c reductase and oligomycin-sensitive adenosinetriphosphatase (ATPase) after dietary lipid treatment revealed different responses in their critical temperature. For succinate-cytochrome c reductase, the critical temperature was 29 degrees C for rats fed the sheep kidney fat diet and 20 degrees C for rats fed the sunflower seed oil diet. In contrast, no shift in the critical temperature for the mitochondrial ATPase was apparent as a result of the differing dietary lipid treatments. The results suggest that the discontinuity in the Arrhenius plot of succinate-cytochrome c reductase is induced by some change in the physical properties of the membrane lipids. In contrast, mitochondrial ATPase appears insensitive, in terms of its thermal behaviour, to changes occurring in the composition of the membrane lipids. However, the specific activity of the mitochondrial ATPase was affected by the dietary lipid treatment being highest for the rats fed the sheep kidney fat diet. No dietary lipid effect was observed for the specific activity of succinate-cytochrome c reductase. This differential response of the two mitochondrial membrane enzymes to dietary-induced changes in membrane lipid composition may affect mitochondrial oxidative phosphorylation.  相似文献   

15.
Zhou S  Liang D  Burger C  Yeh F  Chu B 《Biomacromolecules》2004,5(4):1256-1261
Synchrotron small-angle X-ray scattering was used to study the nanostructures of the complexes formed by calf thymus DNA interacting with cationic lipids (or surfactants) of didodecyldimethylammonium bromide (DDAB), cetyltrimethylammonium bromide (CTAB), and their mixture with a zwitterionic lipid of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (PHGPC). The effects of lipid/DNA ratios, DNA chain flexibility, lipid topology, and neutral lipid mixing on the nanostructures of DNA-lipid complexes were investigated. The complexes between double-stranded DNA (dsDNA) and double-tailed DDAB formed a bilayered lamellar structure, whereas the complexes between dsDNA and single-tailed CTAB preferred a structure of 2D hexagonal close packing of cylinders. With single stranded DNA (ssDNA) interacting with CTAB, the complexes showed a Pm3n cubic structure due to the different chain flexibility between dsDNA and ssDNA. The lipid molecules bound by rigid dsDNA like to form cylindrical micelles, whereas lipids bound to flexible ssDNA could form spherical or short cylindrical micelles. The addition of the neutral single-chained PHGPC lipids to the CTAB lipids could induce a structural transition of dsDNA-lipid complexes from a 2D hexagonal to a multi-bilayered lamellar structure. The parallel DNA strands were intercalated in the water layers of lamellar stacks of the mixed lipid bilayers. The DNA-DNA spacing depended on the ratios of charged lipid to neutral lipid, and charged lipid to DNA, respectively.  相似文献   

16.
Considering the lipophilicity of aspirin (log P = -1.15), a significant contributor to its action mechanism, interaction of the drug with the whole lipids of goat blood have been investigated using phospholipid binding and lipid peroxidation phenomena as the parameters under investigation. The lipid content change along with the peroxidation induced by aspirin and its suppression with ascorbic acid had been quantitatively measured. Significant loss in phospholipid was observed after incubation of whole blood with aspirin in varying periods of time. This may be ascribed to binding affinity of aspirin with lipid constituents in blood, which may have potential role in its therapeutic effect. Lipid peroxidation induction potential of aspirin caused significant extent of peroxidation. Ascorbic acid, an antioxidant could significantly reduce aspirin induced lipid peroxidation.  相似文献   

17.
《Phytochemistry》1987,26(4):961-965
Carotenoids and total neutral lipids from thylakoids of Nerium oleander were evaluated as antioxidants in liposomes prepared from soybean polar lipids. The extent of lipid oxidation was assessed from the formation of malondialdehyde and conjugated dienes after exposure of the liposomes to free radicals generated by 60Co gamma radiolysis. The carotenoids incorporated into the bilayers were isolated from clones of oleander grown at 20° or 45°, growth conditions which are known to result in a difference in the thermal properties of the membrane lipids. The effect of carotenoids on the temperature of the phase transition of thylakoid polar lipids was also examined. The results showed that, in comparison with the effectiveness of a reference antioxidant, α-tocopherol, the carotenoids and total neutral lipids from thylakoids of oleander did not protect the soybean polar lipids from oxidation, nor did they influence the temperature of the phase transition of thylakoid polar lipids.  相似文献   

18.
《Free radical research》2013,47(12):1009-1015
Abstract

This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.  相似文献   

19.
Lipids of the radio-resistant bacterium Deinococcus radiophilus were tested for their antioxidant properties. The crude lipid extract showed a significant antioxidant effect in linoleic acid emulsion. The crude extract was separated to polar and non-polar lipid fractions. The non-polar fraction showed an antioxidant effect in both suspensions and emulsions of linoleic acid, and inhibition of oxidation in a β-carotene emulsion. Lipids of the non-polar fraction were separated and their antioxidant activity was determined in a β-carotene emulsion; the lipid that was marked NP9 showed the highest antioxidant effect. Lipid NP9 inhibited oxidation in a β-carotene emulsion in the concentration range of 5–51 ppm. It is suggested that the antioxidant activity of lipids of D. radiophilus contribute to its radio-resistance.  相似文献   

20.
The fluorophore 4-heptadecyl-7-hydroxycoumarin was used as a probe to study the properties of phospholipid bilayers at the lipid-water interface. To this end, the steady-state fluorescence anisotropy, the differential polarized phase fluorometry, and the emission lifetime of the fluorophore were measured in isotropic viscous medium, in lipid vesicles, and in the membrane of vesicular stomatitis virus. In the isotropic medium (glycerol), the probe showed an increase in the steady-state fluorescence anisotropy with a decrease in temperature, but the emission lifetime was unaffected by the change in temperature. In glycerol, the observed and predicted values for maximum differential tangents of the probe were identical, indicating that in isotropic medium 4-heptadecyl-7-hydroxycoumarin is a free rotator. Nuclear magnetic resonance and differential scanning calorimetric studies with lipid vesicles containing 1-2 mol % of the fluorophore indicated that the packaging density of the choline head groups was affected in the presence of the probe with almost no effect on the fatty acyl chains. The fluorophore partitioned equally well in the gel and liquid-crystalline phase of the lipids in the membrane, and the phase transition of the bilayer lipids was reflected in the steady-state fluorescence anisotropy of the probe. The presence of cholesterol in the lipid vesicles had a relatively small effect on the dynamics of lipids in the liquid-crystalline state, but a significant disordering effect was noted in the gel state. One of the most favorable properties of the probe is that its emission lifetime was unaffected by the physical state of the lipids or by the temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号