首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of labeled GABA into brain and brain nerve endings was studied in the adult rat after i.p. injection of large doses of neurotransmitter (740 mg/Kg). In the first 5–30 minutes after the injection the exogenous neurotransmitter reaches a stable plasma level of around 5 mM. The accumulation of radioactive GABA into the brain presents a latency of a few minutes from the time of the injection. Thereafter, the accumulation of the neurotransmitter is almost linear with time. Once in the brain tissue labeled GABA is in part broken down. The exogenous neurotransmitter is taken up in GABA-ergic nerve endings with a steep increase between 20 and 30 minutes after the injection. From a quantitative point of view, the data show that the brain accumulation of labeled GABA at 30 minutes post injection is minimal in the respect of the steady state average concentration of the endogenous neurotransmitter (0.014%). However, the amount of radioactive GABA which accumulates in the nerve endings, at the same post injection time, is around 7% of the endogenous neurotransmitter in that comparment. The data thus show a selective enrichment of exogenous systemic GABA in a physiologically important compartment of the brain.  相似文献   

2.
The effects of iron-dependent peroxidation on respiration and neurotransmitter transport of brain nerve endings has been studied. Rat brain synaptosomes were peroxidized by exposure to an ADP-Fe/ascorbate system and the protective effect of added Se, Cd, or Zn was investigated with regard to dopamine and gamma-aminobutyric acid (GABA) transport. Peroxidation impaired the respiration of synaptosomes by about 20% and caused a marked increase in dopamine uptake; but in contrast, peroxidation induced a large decrease in synaptosomal uptake of GABA. The increased dopamine transport into synaptosomes was partially prevented by the presence of Zn, Se, or Cd. The presence of Zn, Cd, or Se, in order of decreasing effectiveness, also slowed down ADP-Fe/ascorbate mediated peroxidation of synaptosomes. Peroxidation caused a significant inhibition of veratridine-dependent release of both dopamine and GABA from synaptosomes, but the KCl-dependent release of these neurotransmitters was not effected by peroxidation. These results implicate that peroxidation damage of nerve endings may lead to large changes in neurotransmitter transport thus resulting in an alteration in the function of the central nervous system.  相似文献   

3.
Cupello  A.  Mainardi  P.  Robello  M.  Thellung  S. 《Neurochemical research》1997,22(12):1517-1521
The effect of nitric oxide donors and L-arginine on the uptake of GABA was studied in synaptosomes purified from rat brain. The neurotransmitter uptake was significantly reduced by S-nitrosoacetylpenicillamine and by sodium nitroprusside, although in this case to a lesser extent. A slight inhibitory effect was found preincubating rat brain synaptosomes with 1 mM L-arginine as well. The S-nitrosoacetylpenicillamine effect gradually disappeared with decomposition of the substance by exposure to light. The nitric oxide effect appears to be mainly due to a decrease in the V for synaptosomal GABA uptake and seems to be related to a partial collapse of nerve endings ionic gradients. Functionally, it could result over time in a reduced availability of GABA at the synapses involved.  相似文献   

4.
An experimental procedure was developed which allowed the simultaneous measurement of GABA in synaptosomes from 11 regions of one rat brain. Synaptosomal fractions were prepared by conventional subcellular fractionation procedures and characterized by electron microscopy. Post-mortem increases of GABA during removal and dissection of brain tissue, homogenization and fractionation procedures could be sufficiently minimized by rapid processing of the tissue at low temperatures and inclusion of 3-mercaptopropionic acid (1 mM) in the homogenizing medium. Experiments with addition of aminooxyacetic acid (AOOA, 1 mM) to the homogenizing medium indicated that GABA was not being degraded during synaptosome preparation. The presence of exogenous GABA (1 mM) did not alter the GABA levels in the organelles, indicating that no significant redistribution of GABA occurred during subcellular fractionation. On the basis of these findings, it was suggested that synaptosomal fractions could be used as a model to monitor indirectly the drug-induced changes in GABA levels of nerve endings in discrete brain areas of the intact animal. In vivo experiments with AOAA (30 mg/kg i.p.) and valproic acid (VPA, 200 mg/kg i.p.) showed that both drugs caused differential effects on synaptosmal GABA levels in different brain regions. Although AOAA was more potent than VPA in increasing GABA in whole tissue of most brain regions, significant increases of synaptosomal GABA levels after AOAA were only determined in olfactory bulbs and frontal cerebral cortex. In contrast, VPA induced significant synaptosomal GABA increases in olfactory bulbs, hypothalamus, superior and inferior colliculus, substantia nigra, and cerebellum. The data indicate that the synaptosomal model can provide useful information on the in vivo effects of drugs on GABA levels in nerve terminals and their ability to exert this effect in specific brain areas.  相似文献   

5.
Abstract: Five inhibitors of the GABA degrading enzyme GABA-aminotransferase (GABA-T), viz., gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate, and aminooxyacetic acid, as well as GABA itself and the antiepileptic sodium vdproate were administered to mice in doses equieffective to raise the electroconvulsive threshold by 30 V. The animals were killed at the time of maximal anticonvulsant effect of the respective drugs and GABA, GABA-T and glutamate decarboxylase (GAD) were determined in whole brain and synaptosomes, respectively. The synaptosomal fraction was prepared from brain by conventional ultracentrifugation procedures. All drugs studied brought about significant increases in both whole brain and synaptosomal GABA concentrations, and, except GABA itself, inhibited the activity of GABA-T. Furthermore, all drugs, except GABA and γ-acetylenic GABA, activated GAD in the synaptosomal fraction. This was most pronounced with ethanolamine O -sulphate, which induced a twofold activation of this enzyme but exerted only a weak inhibitory effect on GABA-T. The results suggest that activation of GAD is an important factor in the mechanism by which several inhibitors of GABA-T and also valproate increase GABA concentrations in nerve terminals, at least in the relatively non-toxic doses as used in this study.  相似文献   

6.
Abstract: The intramuscular administration of L-cycloserine, gabaculine, and aminooxyacetic acid caused significant, time-dependent increases in the γ-aminobutyric acid (GABA) content of both whole brain and synaptosomalenriched preparations obtained from the tissue, a linear relationship being observed between the two parameters. In contrast, the administration of hydrazine resulted in a large increase in whole brain GABA level, with little change in the synaptosomal GABA content. The key factor in these different responses appeared to be the degree of inhibition of glutamic acid decarboxylase by the drugs. Pretreatment of mice with the GABA-elevating agents resulted in a delay in the onset of seizures, which was related directly to the increase in synaptosomal GABA content. Although the seizures were delayed, they occurred while the GABA content of nerve endings (synaptosomes) was above that in preparations from untreated animals. The decrease in GABA content at the onset of seizures, expressed as a percentage of the level at the time of injection of the convulsant agent, was, however, reasonably constant. A hypothesis to explain these results is proposed.  相似文献   

7.
This study was undertaken to explore in synaptosomal preparations the disposition of N-acetyl-aspartyl-glutamate (NAAG), an endogenous acidic dipeptide neurotransmitter candidate. Radiolabel from N-acetyl-aspartyl[3H]glutamate was taken up rapidly into an osmotically sensitive compartment by rat brain synaptosomal preparations in a sodium-, temperature-, and time-dependent manner. HPLC analysis of the accumulated radiolabel indicated that the bulk of the tritium cochromatographed with glutamic acid and not with NAAG. In contrast, [14C]NAAG, labeled on the N-terminal acetate, was not taken up by the synaptosomal preparation. All effective inhibitors of synaptosomal, Na+-dependent [3H]glutamate uptake were found to exhibit similar potency in inhibiting uptake of tritium derived from [3H]NAAG. However, certain alpha-linked acidic dipeptides, structurally similar to NAAG, as well as the potent convulsant quisqualic acid inhibited synaptosomal transport of [3H]NAAG but were ineffective as inhibitors of [3H]glutamate transport. Together with a demonstration of disparities between the regional accumulation of radiolabel from [3H]NAAG and high-affinity [3H]glutamate uptake, these data suggest the presence in brain of a specific peptidase targeting carboxy-terminal glutamate-containing dipeptides that may be coupled to the Na+-dependent glutamate transporter. These findings provide a possible mechanism for NAAG inactivation subsequent to its release from nerve endings.  相似文献   

8.
Abstract: The amino acid content of synaptosomes was determined in six regions of rat brain, and in all regions the five predominant amino acids were glutamate, glutamine, aspartate, taurine, and GABA (γ-aminobutyrate). However, the proportions of the individual amino acids varied considerably from one region to another, the GABA content being particularly high and the taurine content low in synaptosomes from the diencephalon and mesencephalon. Administration of isonicotinic acid hydrazide to rats lowered the synaptosomal GABA level by similar amounts in all brain regions, but the administration of gabaculine resulted in a particularly long-acting elevation in GABA levels in the nerve endings of the diencephalon and mesencephalon. The possibility is raised that the high GABA levels in the nerve terminals of the diencephalon may be involved in the gabaculine-induced lowering of the body temperature of the rats. A constancy in the amount of the synaptosomal pool of "aspartate + glutamate + glutamine + GABA" was observed despite large changes in the relative amounts of the four amino acids brought about by gabaculine.  相似文献   

9.
The present experiments are the first survey of the association of endogenous and exogenous putrescine, spermidine, and spermine with subcellular structures of rat brain cortex. The differences of distribution in subfractions obtained from salt-free and salt-containing density gradients were studied, with the following results: (1) In contrast with liver preparation, putrescine and the polyamines spermidine and spermine are not distributed in parallel with RNA. (2) In salt-containing media, putrescine and the polyamines were preferentially associated with synaptosomes and with synaptosomal membranes. Significant association with myelin constituents was observed only in salt-free media. (3) Exogenous putrescine and the polyamines were less firmly attached to synaptosomes and to synaptosomal membrane fractions than the endogenous amines. There is good evidence for similar subcellular localizations of putrescine and GABA. Putrescine seems to be entrapped in the nerve endings. (4) Uptake studies with crude mitochondria under conditions of high-affinity uptake showed no temperature-sensitive component of polyamine accumulation in synaptosomes, in contrast with GABA, monoacetylputrescine, and ornithine. (5) Polyamines bound to myelin constituents or mitochondria could be displaced by a 200-fold concentration of nonradioactive amines; this was not the case with polyamines bound to synaptosomes. Mg2+ did not effectively compete with spermine for binding sites at synaptic regions. (6) Electrical stimulation and stimulation by mono- and bivalent cations did not change the concentrations of the polyamines and GABA in guinea pig cortex. (7) There is no evidence for a neurotransmitter role of putrescine, spermidine, or spermine, although these compounds might function as modulators of neurotransmission.  相似文献   

10.
Ammonia contents in the brain stem and prosencephalon markedly increased in a rat model of acute hepatic failure induced by partial hepatectomy following CCl4 intoxication. In hepatic failure rats, synaptosomal glutamic acid (excitatory amino acid neurotransmitter) contents decreased significantly in the prosencephalon, and GABA (inhibitory amino acid neurotransmitter) contents decreased significantly in the brain stem. The molar ratio of glutamic acid to glutamine significantly diminished in the brain stem. Glutamic acid decarboxylase activity in the synaptosomes and the binding of [3H]glutamic acid and [3H]GABA to synaptosomal membrane preparations were unchanged in acute hepatic failure rats. These results indicate than an insufficiency of both excitatory and inhibitory neurotransmitter amino acids is induced by high ammonia contents in the synaptosomes of the brain stem during acute hepatic failure.  相似文献   

11.
Epidermal Growth Factor in Synaptosomal Fractions of Mouse Cerebral Cortex   总被引:3,自引:1,他引:2  
Using a specific and sensitive epidermal growth factor radioimmunoassay (EGF-RIA) we measured EGF concentrations in whole brain, cerebral cortex, and cerebral cortical synaptosomal (pinched-off presynaptic nerve terminals) fractions of 26-day-old mouse brain. The relative EGF concentration in synaptosomal fractions was significantly greater than the growth factor concentrations in whole brain or cerebral cortex. Intracerebral injection, in an amount of EGF, several-fold greater than whole brain EGF content, did not appreciably increase synaptosomal EGF concentration, suggesting that no artifact was involved. The high synaptosomal EGF content suggests a neurotransmitter or a neuromodulator role for EGF in the CNS.  相似文献   

12.
Neuromodulators that alter the balance between lower-frequency glutamate-mediated excitatory and higher-frequency GABA-mediated inhibitory synaptic transmission are likely to participate in core mechanisms for CNS function and may contribute to the pathophysiology of neurological disorders such as schizophrenia and Alzheimer's disease. Pregnenolone sulfate (PS) modulates both ionotropic glutamate and GABA(A) receptor mediated synaptic transmission. The enzymes necessary for PS synthesis and degradation are found in brain tissue of several species including human and rat, and up to 5 nM PS has been detected in extracts of postmortem human brain. Here, we ask whether PS could modulate transmitter release from nerve terminals located in the striatum. Superfusion of a preparation of striatal nerve terminals comprised of mixed synaptosomes and synaptoneurosomes with brief-duration (2 min) pulses of 25 nM PS demonstrates that PS increases the release of newly accumulated [3H]dopamine ([3H]DA), but not [14C]glutamate or [3H]GABA, whereas pregnenolone is without effect. PS does not affect dopamine transporter (DAT) mediated uptake of [3H]DA, demonstrating that it specifically affects the transmitter release mechanism. The PS-induced [3H]DA release occurs via an NMDA receptor (NMDAR) dependent mechanism as it is blocked by D-2-amino-5-phosphonovaleric acid. PS modulates DA release with very high potency, significantly increasing [3H]DA release at PS concentrations as low as 25 pM. This first report of a selective direct enhancement of synaptosomal dopamine release by PS at picomolar concentrations via an NMDAR dependent mechanism raises the possibility that dopaminergic axon terminals may be a site of action for this neurosteroid.  相似文献   

13.
The study was centered on the changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate or gamma-aminobutyric acid (GABA), and that possess convulsant or anticonvulsant properties. The onset of seizures induced by various convulsant agents was associated with a decreased content of GABA and an increased content of glutamate in synaptosomes. The concurrent administration of pyridoxine prevented both the biochemical changes and the convulsions. The administration of gabaculine to mice resulted in large increases in the GABA content of synaptosomes that were counteracted by decreases in glutamate, glutamine, and aspartate levels such that the total content of the four amino acids remained unchanged. The administration of aminooxyacetic acid (0.91 mmol/kg) resulted initially in seizure activity, but subsequently in an anticonvulsant action. No simple relationship existed between the excitable state of the brain induced by aminooxyacetic acid and the changes in the synaptosomal levels of any of the amino acid transmitters. A hypothesis was, however, formulated that explained the convulsant-cum-anticonvulsant action of aminooxyacetic acid on the basis of compartmentation of GABA within the nerve endings.  相似文献   

14.
Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter of the mammalian brain, can induce coma. Outside the central nervous system it is synthesized by gut bacteria and catabolized largely in the liver. GABA and its agonists, as well as benzodiazepines and barbiturates, induce neural inhibition as a consequence of their interaction with specific binding sites for each of these classes of neuroactive substances on the GABA receptor complex of postsynaptic neurons. In a rabbit model of acute liver failure: (i) the pattern of postsynaptic neuronal activity in hepatic coma, as assessed by visual evoked potentials, is identical to that associated with coma induced by drugs which activate the GABA neurotransmitter system (benzodiazepines, barbiturates, and GABA agonists); (ii) the levels of GABA-like activity in peripheral blood plasma increase appreciably before the onset of hepatic encephalopathy, due at least in part to impaired hepatic extraction of gut-derived GABA from portal venous blood; (iii) the blood-brain barrier becomes abnormally permeable to an isomer of GABA, alpha-amino-isobutyric acid, before the onset of hepatic encephalopathy; and (iv) hepatic coma is associated with an increase in the density of receptors for GABA and benzodiazepines in the brain. These findings are the bases of the following hypotheses: (i) when the liver fails, gut-derived GABA in plasma crosses an abnormally permeable blood-brain barrier and by mediating neural inhibition contributes to hepatic encephalopathy; (ii) an increased number of GABA receptors in the brain found in liver failure increases the sensitivity of the brain to GABA-ergic neural inhibition; and (iii) an increased number of drug binding sites mediates the increased sensitivity to benzodiazepines and barbiturates observed in liver failure by permitting increased drug effect.  相似文献   

15.
The possible occurrence of sialyltransferase activity in the plasma membranes surrounding nerve endings (synaptosomal membranes) was studied, using calf brain cortex. The synaptosomal membranes were prepared by an improved procedure which provided: (a) a ?nerve ending fraction” consisting of at least 85% well-preserved nerve endings and containing only small quantities of membranes of intracellular origin; (b) a ?synaptosomal membrane fraction” carrying high amounts of authentic plasma membrane markers (Na+-K+ ATPase, 5′-nucleotidase, sialidase, gangliosides) with values of specific activity four to fivefold higher than those in the ?nerve ending fraction” and very small amounts of cerebroside sulphotransferase, marker of the Golgi apparatus, and of other markers of intracellular membranes (rotenone-insensitive NADH and NADPH: cytochrome c reductases), the specific activities of which were, respectively, 0.5- and 0.7-fold that in the ?nerve ending fraction”. Thus the preparation of synaptosomal membranes used had the characteristics of plasma membranes and carried a negligible contamination of membranes of intracellular origin. The distribution of sialyltransferase activity in the main brain subcellular fractions (microsomes; P2 fraction; nerve ending fraction; mitochondria) resembled most closely that of thiamine pyrophosphatase, the enzyme known to be linked to the Golgi apparatus and the plasma membranes and of acetylcholine esterase, the enzyme known to be linked to either intracellular or plasma membranes. The enrichment of sialyltransferase activity in the ?synaptosomal membrane fraction”, referred to the ?nerve ending fraction”, was practically the same as that exhibited by authentic plasma membrane markers. All this is consistent with the hypothesis that in calf brain cortex sialyltransferase has two different subcellular locations: one at the level of intracellular structures, most likely the Golgi apparatus (as described by other authors), the other in the synaptosomal plasma membranes. The basic properties (pH optimum, V/S, V/t and V/protein relationships) and detergent requirements of the synaptosomal membrane-bound sialyltransferase were established. The highest enzyme activities were recorded on exogenous acceptors, lactosylceramide and ds -fetuin. The Km values for CMP-NeuNAc were different using lactosylceramide and ds -fetuin as acceptor substrates (0.57 and 0.135 mm , respectively); the thermal stability of the enzyme acting on glycolipid acceptor was higher than that on the glycoprotein acceptor; the effect of detergents was different when using glycoprotein from glycolipid acceptors; no competition was observed between lactosylceramide and ds -fetuin. Thus the synaptosomal membranes carry at least two different sialyltransferase activities: one acting on lactosylceramide (and glycolipid acceptors), the other working on ds -fetuin (and glycoprotein acceptors). Ganglioside GM3 was recognized as the product of synaptosomal membrane-bound sialyltransferase activity working on lactosylceramide as acceptor substrate.  相似文献   

16.
Abstract: Kinetic studies of [3H]γ-aminobutyric acid ([3H]GABA) after an intravenous injection were performed in normal rats and in rats with severe degree of hepatic encephalopathy due to fulminant hepatic failure induced by galactosamine. Moreover, plasma and brain GABA levels, and GABA and glutamic acid decarboxylase activity were studied in some brain areas. After intravenous injection, [3H]GABA disappeared very rapidly in the blood of normal rats, with a prompt increase of 3H metabolites. In comatose rats, a delayed disappearance of [3H]GABA.as parallelled by a lower amount of metabolites, indirectly indicating a peripheral decrease of GABA-transaminase activity. The amount of [3H]GABA in brain was lightly but constantly lower in comatose rats than in controls, indicating that the change in permeability of the blood-brain barrier in hepatic encephalopathy does not affect the [3H]GABA uptake of the brain. Furthermore, the assay of endogenous GABA in blood, whole brain, and brain areas did not show any significant difference in any of the two groups. The finding that glutamic acid decarboxylase activity in brain was reduced, together with the indirect evidence of a reduction in GABA-transaminase, may account for the steady state of GABA in hepatic encephalopathy. However, the reduction in glutamic acid decarboxylase activity is in favor of a functional derangement at the GABA-ergic nerve terminals in this pathological condition.  相似文献   

17.
The effects of fatty acids, oleate and palmitate, on gamma-aminobutyric acid (GABA), aspartate, and 3,4- dihydroxyphenylethylamine (dopamine) transport and a variety of other membrane functions were studied in rat brain synaptosomes at a constant lipid-to-protein ratio. Under the conditions utilized oleate, but not palmitate, caused statistically significant changes in synaptosomal functions. Oleic acid inhibited the uptake of the amino acid neurotransmitters and dopamine in a tetrodotoxin-insensitive manner; it also induced the release of neurotransmitters from synaptosomes. The synaptosomal membrane potential decreased and the maximum GABA accumulation ratio [( GABA]i/[GABA]o) declined in parallel. The same depolarizing effect was seen in the presence of 50 microM verapamil or when chloride was replaced by propionate. The rate of respiration was stimulated by the unsaturated fatty acid; neither verapamil (50 microM) nor ouabain (100 microM) was effective in preventing the increase in oxygen consumption. By contrast, ruthenium red substantially decreased the stimulatory effect of oleate. The intrasynaptosomal [Ca2+] was increased by 40%, whereas [Na+]i remained unaltered. It is postulated that under the conditions used the inhibition of neurotransmitter uptake and the decrease in their accumulation caused by oleate result from the depolarization of synaptosomes that arises, at least in part, from increased permeability of the plasma membrane to calcium ions.  相似文献   

18.
After the intraventricular injection of 6-hydroxydopamine (6-OHDA), there was a long lasting reduction in the brain concentrations of noradrenaline (NA) and dopamine (DA). The brain concentration of NA was affected by lower doses of 6-OHDA than were required to deplete DA. A high dose of 6-OHDA which depleted the brain of NA and DA by 81 per cent and 66 per cent respectively, had no significant effect on brain concentrations of 5-hydroxytryptamine (5-HT) or γ-aminobutyric acid (GABA). The fall in catecholamines was accompanied by a long lasting reduction in the activities of tyrosine hydroxylase and DOPA decarboxylase in the hypothalamus and striatum, areas in the brain which are rich in catecholamine containing nerve endings. There was, however, no consistent effect on catechol-O-methyl transferase or monamine oxidase activity in these brain regions. The initial accumulation of [3H]NA into slices of the hypothalamus and striatum was markedly reduced 22–30 days after 6-OHDA treatment. These results are consistent with the evidence in the peripheral sympathetic nervous system that 6-OHDA causes a selective destruction of adrenergic nerve endings and suggest that this compound may have a similar destructive effect on catecholamine neurones in the CNS.  相似文献   

19.
Benzodiazepines are known to facilitate GABA-ergic transmission at synaptic sites, while sodium valproate is an anticonvulsant drug which is reported to elevate GABA levels in the brain. In order to determine whether these two drugs interact functionally at GABA receptor sites, graded doses of chlordiazepoxide (CDZ) and sodium valproate were injected bilaterally into the nucleus accumbens and their effect on the dopamine (DA)-induced stimulation of motor activity was studied. Both of these compounds, as well as GABA, produced an inhibition of the hyperactivity induced by the bilateral injection of DA into the nucleus accumbens. Bicuculline, the GABA receptor antagonist, blocked the effect of CDZ on the DA-induced hyperactivity. A low dose of CDZ (2 μg), which by itself did not significantly inhibit the effect of DA, potentiated the inhibition of the hyperactivity produced by valproate. These results suggest that CDZ and sodium valproate can interact functionally at GABA-ergic sites in the central nervous system.  相似文献   

20.
A procedure is described for the rapid preparation of nerve ending particles (synaptosomes) from 11 regions of one rat brain. The synaptosomal fractions have been characterized by electron microscopy and determination of four marker enzymes, i.e., glutamate decarboxylase (GAD), acetylcholinesterase, succinate dehydrogenase, and glycerol 3-phosphate dehydrogenase. Comparison with a much lengthier standard (Ficoll-sucrose) preparation showed that the synaptosomal yield of the new procedure was substantially better as judged by both morphological evaluation and protein recovery. The improved synaptosome preparation was used for determination of regional gamma-aminobutyric acid (GABA) levels in synaptosomal fractions. The postmortem increase in GABA level during removal and dissection of brain tissue and homogenization and fractionation procedures could be minimized by rapid processing of the tissue at low temperatures and inclusion of the GAD inhibitor 3-mercaptopropionic acid (3-MP; 1 mM) in the homogenizing medium. The addition of GABA (0.2 mM) to the homogenizing medium did not alter the GABA levels in the synaptosomes, indicating that no significant redistribution of GABA occurred during subcellular fractionation in sodium-free media. Synaptosomal GABA levels determined in the 11 rat brain areas showed the same regional distribution as the GABA-synthesizing enzyme GAD. On the basis of these findings, it was suggested that the synaptosome preparation could be used to evaluate the in vivo effects of drugs on nerve terminal GABA. Treatment of rats with a convulsant dose of 3-MP (50 mg/kg i.p.) 3 min before decapitation significantly lowered synaptosomal GABA levels in olfactory bulb, hippocampus, thalamus, tectum, and cerebellum. The 3-MP-induced seizures and reduction of GABA levels could be prevented by administration of valproic acid (200 mg/kg i.p.) 15 min before the 3-MP injection. The data indicate that the improved synaptosome preparation offers a convenient method of preparing highly purified synaptosomes from a large number of small tissue samples and can provide useful information on the in vivo effects of drugs on regional GABA levels in nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号