首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Seminars in Virology》1994,5(2):121-132
Canine parvovirus (CPV) emerged in 1978 an a new pathogen of dogs, which spread around the world and now appears endemic in the domesticated and wild dog populations in all countries. CPV is over 98% identical in DNA sequence to viruses which had been known for many years in cats, mink and raccoons, and genetic analysis has revealed that the differences in canine host range are determined by a small number of changes in the capsid protein gene. Comparison of the atomic structures of the CPV and FPV capsids shows that the changes affecting host range and virus-specific antigenic sites are exposed on the capsid surface in three different positions within a raised region at the threefold axis of symmetry, which is also the site of major antigenic determinants on the capsid. Three types of CPV have been defined by antigenic analysis with monoclonal antibodies. The original CPV strain (called CPV type-2) was only present in nature for a few years, and by 1981 it had been largely replaced in nature by a variant of CPV (CPV type 2a), which in turn replaced between 1984 and 1990 by a further variant (CPV type-2b). Those viruses differed by less than 0.2% of their genome sequences, but in each case the replacement apparently occurred on a global scale. The true ancestry of CPV is not clear, but the apparent emergence of the new types of CPV and its subsequent evolution suggest that this is a useful model for the emergence of new viruses with extended host ranges and their continuing adaptation.  相似文献   

2.
Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.  相似文献   

3.
《Seminars in Virology》1995,6(6):415-418
Molecular epidemiological studies of paruoviruses are complicated by the low levels of variation in the DNA genome of the viruses. Nevertheless, use of restriction enzyme analysis, DNA sequencing and monoclonal antibody analysis of epitope variation has been used to examine the distribution of virus strains in nature. Comparison of canine parvovirus and the related viruses from other carnivores showed that a number of variant strains of the viruses could be identfied by DNA sequence and antigenic analysis. Among CPV isolates some strains replaced previous antigenic types, while other variant antigenic types coexisted in nature. The viruses are apparently able to spread world wide, as most geographically separated viruses are not genetically distinct. The human B19 parvovirus has been examined by restriction enzyme analysis and limited DNA sequencing, and a variety of characteristic strains identified. Some were found world wide, while others were apparently found to be associated with certain countries.  相似文献   

4.
S F Chang  J Y Sgro    C R Parrish 《Journal of virology》1992,66(12):6858-6867
Canine parvovirus (CPV) and feline panleukopenia virus (FPV) are over 98% similar in DNA sequence but have specific host range, antigenic, and hemagglutination (HA) properties which were located within the capsid protein gene. In vitro mutagenesis and recombination were used to prepare 16 different recombinant genomic clones, and viruses derived from those clones were analyzed for their in vitro host range, antigenic, and HA properties. The region of CPV from 59 to 91 map units determined the ability to replicate in canine cells. A complex series of interactions was observed among the individual sequence differences between 59 and 73 map units. The canine host range required that VP2 amino acids (aa) 93 and 323 both be the CPV sequence, and those two CPV sequences introduced alone into FPV greatly increased viral replication in canine cells. Changing any one of aa 93, 103, or 323 of CPV to the FPV sequence either greatly decreased replication in canine cells or resulted in an inviable plasmid. The Asn-Lys difference of aa 93 alone was responsible for the CPV-specific epitope recognized by monoclonal antibodies. An FPV-specific epitope was affected by aa 323. Amino acids 323 and 375 together determined the pH dependence of HA. Amino acids involved in the various specific properties were all around the threefold spikes of the viral particle.  相似文献   

5.
Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons—a newly recognized CPV host—to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity.  相似文献   

6.
Canine parvovirus (CPV) is a host range variant of a feline virus that acquired the ability to infect dogs through changes in its capsid protein. Canine and feline viruses both use the feline transferrin receptor (TfR) to infect feline cells, and here we show that CPV infects canine cells through its ability to specifically bind the canine TfR. Receptor binding on host cells at 37 degrees C only partially correlated with the host ranges of the viruses, and an intermediate virus strain (CPV type 2) bound to higher levels on cells than did either the feline panleukopenia virus or a later strain of CPV. During the process of adaptation to dogs the later variant strain of CPV gained the ability to more efficiently use the canine TfR for infection and also showed reduced binding to feline and canine cells compared to CPV type 2. Differences on the top and the side of the threefold spike of the capsid surface controlled specific TfR binding and the efficiency of binding to feline and canine cells, and these differences also determined the cell infection properties of the viruses.  相似文献   

7.
Aquatic birnaviruses, such as infectious pancreatic necrosis virus (IPNV), cause serious diseases in a variety of fish species used worldwide in aquaculture and have also been isolated from a variety of healthy fish and shellfish species. These viruses exhibit a high degree of antigenic heterogeneity and variation in biological properties such as pathogenicity, host range, and temperature of replication. To better understand genetic and biological diversity among these viruses, the nucleotide and deduced amino acid sequences were determined from cDNA of the large open reading frame (ORF) of genome segment A of the 9 type strains of Serogroup A and 4 other representative strains of Serotype A1, the predominant serotype in the United States. In addition, nucleotide and deduced amino acid sequences were determined for the VP2 coding region of a variety of isolates representing 5 of the 9 serotypes. VP2 is the major outer capsid protein of aquatic birnaviruses. RT-PCR was used to amplify a 2904 bp cDNA fragment including all but a few bp of the large ORF of genome segment A or a 1611 bp fragment representing the entire VP2 coding region. Nucleotide and deduced amino acid sequences were determined from the PCR products. Pairwise comparisons were made among our data and 2 other aquatic birnavirus sequences previously published. Several hypervariable regions were identified within the large ORF. The most divergent pair of viruses exhibited a similarity of 80.1% in the deduced amino acid sequence encoded by the large ORF. Genomic relationships revealed in a phylogenetic tree constructed from comparison of the deduced amino acid sequences of the large ORF demonstrated that these viruses were clustered into several genogroups. Phylogenetic comparison of the deduced amino acid sequences of the VP2 coding region of 28 aquatic birnavirus isolates, including the type strains of all 9 serotypes, demonstrated 6 genogroups, some of which were comprised of several genotypes. The most divergent pair of viruses exhibited a similarity of 81.2% in the deduced amino acid sequence from the VP2 coding region. In contrast to previous studies of much shorter genomic sequences within the C-terminus-pVP2/NS junction coding region, these genogroups based on the entire large ORF or the VP2 coding region generally correlated with geographical origin and serological classification. Isolates from the major Canadian serotypes were more closely related to the European isolates than to isolates from the United States.  相似文献   

8.
Canine parvovirus type 2 (CPV-2) is a severe enteric pathogen of dogs, causing high mortality in unvaccinated dogs. After emerging, CPV-2 spread rapidly worldwide. However, there is now some evidence to suggest that international transmission appears to be more restricted. In order to investigate the transmission and evolution of CPV-2 both nationally and in relation to the global situation, we have used a long-range PCR to amplify and sequence the full VP2 gene of 150 canine parvoviruses obtained from a large cross-sectional sample of dogs presenting with severe diarrhea to veterinarians in the United Kingdom, over a 2-year period. Among these 150 strains, 50 different DNA sequence types (S) were identified, and apart from one case, all appeared unique to the United Kingdom. Phylogenetic analysis provided clear evidence for spatial clustering at the international level and for the first time also at the national level, with the geographical range of some sequence types appearing to be highly restricted within the United Kingdom. Evolution of the VP2 gene in this data set was associated with a lack of positive selection. In addition, the majority of predicted amino acid sequences were identical to those found elsewhere in the world, suggesting that CPV VP2 has evolved a highly fit conformation. Based on typing systems using key amino acid mutations, 43% of viruses were CPV-2a, and 57% CPV-2b, with no type 2 or 2c found. However, phylogenetic analysis suggested complex antigenic evolution of this virus, with both type 2a and 2b viruses appearing polyphyletic. As such, typing based on specific amino acid mutations may not reflect the true epidemiology of this virus. The geographical restriction that we observed both within the United Kingdom and between the United Kingdom and other countries, together with the lack of CPV-2c in this population, strongly suggests the spread of CPV within its population may be heterogeneously subject to limiting factors. This cross-sectional study of national and global CPV phylogeographic segregation reveals a substantially more complex epidemic structure than previously described.  相似文献   

9.
Canine parvovirus type 2 (CPV‐2) is extremely contagious and causes high rate of morbidity to many wild carnivores. It has three variants (CPV‐2a, CPV‐2b, and CPV‐2c) that are distributed worldwide with different frequencies and levels of genetic and antigenic variability. The disease poses a threat to the healthy survival and reproduction of wildlife. The research on the relationship between CPV‐2 epidemic and environmental variables is lacking. To fill this research gap, we used maximum entropy (MaxEnt) approach with principal component analysis (PCA) to evaluate the relation between CPV‐2 and environmental variables and to create a world risk map for this disease. According to the PCA results, 18 environmental variables were selected from 68 variables for subsequent analyses. MaxEnt showed that annual mean temperature, isothermality, altitude, November precipitation, maximum temperature of warmest month, and precipitation of warmest quarter were the six most important variables associated with CPV‐2 distribution, with a total of 77.7% percent contribution. The risk of this disease between 18°N and 47°N was high, especially in the east of China and the United States. These results support further prediction of risk factors for this virus to help secure the health and sustainable survival of wild carnivores.  相似文献   

10.
The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses.  相似文献   

11.
The genetic and antigenic variability of the G glycoproteins from 76 human respiratory syncytial (RS) viruses (subgroup A) isolated during six consecutive epidemics in either Montevideo, Uruguay, or Madrid, Spain, have been analyzed. Genetic diversity was evaluated for all viruses by the RNase A mismatch cleavage method and for selected strains by dideoxy sequencing. The sequences reported here were added to those published for six isolates from Birmingham, United Kingdom, and for two reference strains (A2 and Long), to derive a phylogenetic tree of subgroup A viruses that contained two main branches and several subbranches. During the same epidemic, viruses from different branches were isolated. In addition, closely related viruses were isolated in distant places and in different years. These results illustrate the capacity of the virus to spread worldwide, influencing its mode of evolution. The antigenic analysis of all isolates was carried out with a panel of anti-G monoclonal antibodies that recognized strain-specific (or variable) epitopes. A close correlation between genetic relatedness and antigenic relatedness in the G protein was observed. These results, together with an accumulation of amino acid changes in a major antigenic area of the G glycoprotein, suggest that immune selection may be a factor influencing the generation of RS virus diversity. The pattern of RS virus evolution is thus similar to that described for influenza type B viruses, expect that the level of genetic divergence among the G glycoproteins of RS virus isolates is the highest reported for an RNA virus gene product.  相似文献   

12.
Canine parvovirus type 2 (CPV-2) emerged in 1978 and spread worldwide within 2 years. Subsequently, CPV-2 was completely replaced by the variant CPV-2a, which is characterized by four specific capsid (VP2) mutations. The X-ray crystal structure of the CPV-2a capsid shows that each mutation confers small local changes. The loss of a hydrogen bond and introduction of a glycine residue likely introduce flexibility to sites that control interactions with the host receptor, antibodies, and sialic acids.  相似文献   

13.
In previous studies, it has been demonstrated that outer membrane protein P2 from Haemophilus influenzae type b has porin activity and that antibody directed against P2 is protective in an infant rat bacteraemic model. Outer membrane protein subtyping has been employed to subclassify type b Haemophilus isolates. Strain MinnA has the outer membrane protein subtype 1H and is representative of the dominant clonal group of disease-producing isolates in the United States. In the present study, the P2 gene from strain MinnA was employed to probe EcoRI- and Pvull-digested chromosomal DNA from 24 Haemophilus influenzae type b isolates representative of the common outer membrane protein subtype groups observed throughout the world. Restriction fragment length polymorphisms were identified for the members of the outer membrane protein subtype 3L group, but not for the other subtypes examined. The P2 gene from each of four prototype isolates was then cloned, sequenced and compared to the previously reported sequence of the strain MinnA gene. The P2 gene from each of two isolates with the outer membrane protein subtype 3L was identical to the MinnA P2 sequence. The P2 gene from a subtype 2L isolate differed by a single nucleotide and the gene from a subtype 6U isolate differed by 13 nucleotides. Thus, the P2 protein is highly conserved among type b isolates.  相似文献   

14.
Antigenic variants resistant to eight neutralizing monoclonal antibodies were selected from wild (Mahoney) and attenuated (Sabin) type 1 infectious poliovirions. Cross-immunoprecipitation revealed interrelationships between epitopes which were not detected by cross-neutralization. Operational analysis of antigenic variants showed that seven of eight neutralization epitopes studied were interrelated. Only one neutralization epitope, named Kc, varied independently from all the others. This latter, recognized by C3 neutralizing monoclonal antibody, was present not only on infectious virions but also on heat-denatured (C-antigenic) particles and on isolated capsid protein VP1. Loss of the neutralization function of an epitope did not necessary result from the loss of its antibody-binding capacity. Such potential, but not functional, neutralization epitopes exist naturally on Mahoney and Sabin 1 viruses. Their antibody-binding property could be disrupted by isolating antigenic variants in the presence of the nonneutralizing monoclonal antibody and anti-mouse immunoglobulin antibodies. Single-point mutations responsible for the acquisition of resistance to neutralization in the antigenic variants were located by sequence analyses of their genomes. Mutants selected in the presence of C3 neutralizing monoclonal antibody always had the mutation located inside the antibody-binding site (residues 93 through 103 of VP1) at the amino acid position 100 of VP1. On the contrary, antigenic variants selected in the presence of neutralizing monoclonal antibodies reacting only with D-antigenic particles had mutations situated in VP3, outside the antibody-binding site (residues 93 through 103 of VP1). The complete conversion of the Mahoney to the Sabin 1 epitope map resulted from a threonine-to-lysine substitution at position 60 of VP3.  相似文献   

15.
A panel of monoclonal antibodies that recognize the two major glycoproteins of bovine viral diarrhea virus (BDV) was used to evaluate the antigenic relationship between cytopathic (CP) and noncytopathic (NCP) viruses isolated from cattle dead or dying from fatal BDV infections. Various unrelated BDV isolates were initially screened by indirect immunofluorescence with monoclonal antibodies directed against the 56- to 58- and 48-kilodalton glycoproteins of the virus. A wide spectrum of reactivity that was independent of biotype was found. Biological clones of the same isolate showed only minor variations from the parental isolate, as did isolates taken from different animals located on the same farm. A similar analysis was repeated with pairs of CP and NCP viruses isolated from 16 unrelated clinical cases of BDV infection resulting in fatal disease. The reactivity patterns within individual pairs of isolates taken from the same animals were in most instances very similar and in some cases indistinguishable from one another. The results demonstrate that antigenic similarity between biotypes is a consistent finding in animals dying from fatal BDV infections. In view of the wide degree between biotypes is a consistent finding in animals dying from fatal BDV infections. In view of the wide degree of variation in reactivity patterns between unrelated BDV isolates, the close antigenic similarity of CP BDV to the homologous NCP BDV of a given pair strongly suggests that CP BDV arises by mutation from NCP BDV.  相似文献   

16.
We analyzed a region of the capsid of canine parvovirus (CPV) which determines the ability of the virus to infect canine cells. This region is distinct from those previously shown to determine the canine host range differences between CPV and feline panleukopenia virus. It lies on a ridge of the threefold spike of the capsid and is comprised of five interacting loops from three capsid protein monomers. We analyzed 12 mutants of CPV which contained amino acid changes in two adjacent loops exposed on the surface of this region. Nine mutants infected and grew in feline cells but were restricted in replication in one or the other of two canine cell lines tested. Three other mutants whose genomes contain mutations which affect one probable interchain bond were nonviable and could not be propagated in either canine or feline cells, although the VP1 and VP2 proteins from those mutants produced empty capsids when expressed from a plasmid vector. Although wild-type and mutant capsids bound to canine and feline cells in similar amounts, infection or viral DNA replication was greatly reduced after inoculation of canine cells with most of the mutants. The viral genomes of two host range-restricted mutants and two nonviable mutants replicated to wild-type levels in both feline and canine cells upon transfection with plasmid clones. The capsids of wild-type CPV and two mutants were similar in susceptibility to heat inactivation, but one of those mutants and one other were more stable against urea denaturation. Most mutations in this structural region altered the ability of monoclonal antibodies to recognize epitopes within a major neutralizing antigenic site, and that site could be subdivided into a number of distinct epitopes. These results argue that a specific structure of this region is required for CPV to retain its canine host range.  相似文献   

17.
Geminiviruses associated with yellow or golden mosaic diseases of legume crops in two regions of India were compared by testing their reactivity with 27 monoclonal antibodies (MAbs) prepared to the particles of African cassava mosaic (ACMV) or Indian cassava mosaic (ICMV) viruses. The viruses fell into two main groups. Group 1 comprised isolates of dolichos yellow mosaic virus; these reacted with three or four ACMV MAbs and four ICMV MAbs. Group 2 comprised isolates of horsegram yellow mosaic virus, together with isolates from blackgram, cowpea, French bean, pigeonpea, soybean, Indigofera hirsuta and probably also isolates from mungbean. These reacted with three or four ACMV MAbs but with few or no ICMV MAbs. Isolates within each group differed slightly in epitope profile, depending on the source species (Group 2) or geographical origin (Groups 1 and 2). Isolates from lima bean resembled those in Group 2 but had some antigenic differences, and their status is uncertain. The poor detectability of geminivirus isolates in mungbean may reflect a low virus concentration in this species.  相似文献   

18.
《Seminars in Virology》1995,6(4):219-231
The parvoviruses are small, non-enveloped icosahedral viruses which infect many animals, including vertebrates and arthropods. Vertebrate parvoviruses can be classified into the autonomous and the adeno-associated viruses — the autonomous parvoviruses have been examined in detail for antigenic structure. The protective immunity against parvoviruses in animals appears to be primarily antibody-mediated. The capsid of the autonomous parvoviruses is assembled from two proteins, VP1 and VP2, which overlap in sequence, with VP1 having additional N-terminal residues. Empty capsids can be assembled from VP2 alone.The structures of canine parvovirus (CPV) and feline panleukopenia virus (FPV) have been solved to better than 3·5 Å resolution, and the structure of human parvovirus, B19, has been solved to 8 Å resolution. In each case the T = 1 icosahedron is made up to 60 copies of a structural motif common to VP1 and VP2, consisting of an eight-stranded anti-parallel β-barrel. The surface of the capsid is made up primarily of large elaborate loops which connect the β-strands that make up the barrel. Antigenic epitopes have been mapped utilizing escape mutants, natural variants, peptide analysis and by expression of viral proteins. In CPV two major antigenic determinants were defined by escape mutant analysis, while peptide analysis revealed antigenic determinants in many different regions of the capsid protein, including the amino terminus of VP2. Neutralizing epitopes of B19 were found by peptide analysis in the VP1-unique region and in sequences common to VP1 and VP2. Other antigenic, but non-neutralizing, epitopes were found in the VP1–VP2 junction, as well as various other parts of the VP2 protein.The binding of a Fab derived from one neutralizing anti-CPV Mab has been examined by cryo-electron microscopy image reconstruction, which showed that 60 copies of the Fab were bound per virion. The Fab footprint covered approximately 796 Å2of the capsid surface, in a region where escape mutations to that Mab had been previously shown to cluster. The mechanism of neutralization was not clear, but could involve interference with cell attachment, cell entry or uncoating during the process of cell infection.  相似文献   

19.
Canine parvovirus (CPV) and feline panleukopenia virus (FPV) differ in their ability to infect dogs and dog cells. Canine cell infection is a specific property of CPV and depends on the ability of the virus to bind the canine transferrin receptor (TfR), as well as other unidentified factors. Three regions in the capsid structure, located around VP2 residues 93, 300, and 323, can all influence canine TfR binding and canine cell infection. These regions were compared in the CPV and FPV capsid structures that have been determined, as well as in two new structures of CPV capsids that contain substitutions of the VP2 Asn-93 to Asp and Arg, respectively. The new structures, determined by X-ray crystallography to 3.2 and 3.3 A resolutions, respectively, clearly showed differences in the interactions of residue 93 with an adjacent loop on the capsid surface. Each of the three regions show small differences in structure, but each appears to be structurally independent of the others, and the changes likely act together to affect the ability of the capsid to bind the canine TfR and to infect canine cells. This emphasizes the complex nature of capsid alterations that change the virus-cell interaction to allow infection of cells from different hosts.  相似文献   

20.
The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins corresponding to surface loops 3 and 4 of CPV contain linear epitopes that are located on the external surface of the ADV capsid. Furthermore, these linear epitopes contain neutralizing determinants. Computer comparisons with the CPV crystal structure suggest that these sequences may be adjacent to the threefold axis of symmetry of the viral particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号