首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plasminogen activators (PAs) have been shown to be synthesized in ovarian follicles of several mammalian species, where they contribute to the ovulation process. The type of PA secreted by granulosa cells is species-specific. In fact, whereas in the rat, gonadotropins stimulate tissue-type PA (tPA) production, the same hormonal stimulation induces urokinase PA (uPA) secretion in mouse cells. To investigate in more detail the hormonal regulation of this system, we used the rat ovary as a model in which we analyzed the production of PAs by theca-interstitial (TI) and granulosa cells obtained from preovulatory follicles after gonadotropin stimulation. In untreated rats, uPA was the predominant enzyme in both TI and granulosa cells. After hormonal stimulation, an increase in uPA and tPA activity was observed in both cell types. Surprisingly, only tPA mRNA increased in a time-dependent manner in both cell types, while uPA mRNA increased only in TI cells and actually decreased in granulosa cells. These divergent results between uPA enzyme activity and mRNA levels in granulosa cells were explained by studying the localization of the enzyme. Analysis of granulosa cell lysates showed that after hormonal stimulation, 60-70% of the uPA behaved as a cell-associated protein, suggesting that uPA, already present in the follicle, accumulates on the granulosa cell surface through binding to specific uPA receptors. The redistribution of uPA in granulosa cells and the differing regulation of the two PAs by gonadotropins in the rat ovary suggest that the two enzymes might have different functions during the ovulation process. Moreover, the ability of antibodies anti-tPA and anti-uPA to significantly inhibit ovulation only when coinjected with hCG confirmed that the PA contribution to ovulation occurs at the initial steps.  相似文献   

3.
《Peptides》1987,8(1):29-33
Vasoactive Intestinal Peptide (VIP), originally considered to be a gut hormone, has recently been found to increase estrogen and progesterone production by ovarian granulosa and luteal cells. Because several studies indicate that granulosa cells and oocytes are capable of producing plasminogen activators, we have studied the effects of VIP on plasminogen activator activity in cultured granulosa cells and cumulus-oocyte complexes collected from the ovaries of hypophysectomized, estrogen-treated immature rats. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by a fibrin overlay technique to assess plasminogen activator activity, we observed that treatment with VIP stimulated the secretion of tissue-type plasminogen activator (tPA), but not urinary-type plasminogen activator (uPA), in a dose-dependent manner by cultured granulosa cells as well as by cumulus-oocyte complexes, but not by denuded oocytes. However, preparation of cumulus-free oocytes from cumulus-oocyte complexes which had previously been treated with VIP indicated substantial increases in tPA activity within the oocyte. The actions of VIP on tPA activity in granulosa cells were specific, because other closely related peptides (PHM-27 and glucagon) were ineffective. These effects of VIP, in addition to the previously observed effects on steroidogenesis, suggest that VIP may be an important regulator of ovarian function.  相似文献   

4.
Gonadotropin-releasing hormone (GnRH) acts directly on the ovary to induce ovulation in hypophysectomized proestrous rats. Because plasminogen activators (PAs) are implicated in gonadotropin-induced ovulation, we have studied the effect of GnRH on ovarian PA synthesis. GnRH induced tissue-type PA (tPA) secretion by cultured rat granulosa cells, but inhibited the secretion of urokinase-type PA. These effects were blocked by co-treatment with a GnRH antagonist, suggesting that stereospecific GnRH receptors are involved. Follicle-stimulating hormone (FSH) also induced tPA in granulosa cells but with a different time course than GnRH; the combined effect of FSH and GnRH was additive. The GnRH effect was mimicked by the calcium- and phospholipid-dependent protein kinase C activator, phorbol myristate acetate. In isolated cumulus-oocyte complexes and cumulus cells, GnRH treatment also increased tPA activity. In contrast, treatment of denuded oocytes with GnRH did not increase enzyme activity. After GnRH stimulation of the cumulus-oocyte complexes, tPA content in the denuded oocyte was elevated, suggesting that the cumulus cells mediate the action of GnRH to increase the oocyte enzyme levels. Hybridization experiments using a labeled rat tPA-specific DNA probe showed that both FSH and GnRH increased the level of tPA mRNA in cultured granulosa cells; the stimulatory effect of GnRH was blocked by the GnRH antagonist. Our results indicate that GnRH treatment increases tPA secretion by cultured granulosa cells and cumulus-oocyte complexes. The stimulation of enzyme activity in the granulosa cells is accompanied by increases in tPA mRNA levels.  相似文献   

5.
6.
Studies were conducted to evaluate the effects of vasoactive intestinal peptide (VIP) on steroidogenesis and plasminogen-activator (PA) activity in isolated granulosa cells of the largest preovulatory (F1) follicle of the hen. Vasoactive intestinal peptide, but not avian pancreatic polypeptide, the chicken VIP fragment (16-28) or the VIP congener, PHM-27, induced a dose-related increase in progesterone and androgen secretion, with an apparent median effective dose (ED50) of 5.9 X 10(-7) and 5.7 X 10(-7) M, respectively. The effects of VIP were, at least in part, mediated by the adenylyl cyclase system in that cotreatment of cells with VIP and the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), potentiated the steroidogenic effects. However, the time course of action for VIP on steroidogenesis was considerably slower than that for the gonadotropin, luteinizing hormone (LH), and this was attributed to a slower induction of cyclic adenosine 3',5'-monophosphate (cAMP) formation within granulosa cells. Finally, VIP was found to be a potent inhibitor of PA activity, and this inhibition was potentiated by coincubation of VIP with IBMX. We suggest that, in the hen, VIP has a direct and specific action on both steroidogenesis and PA activity, and that these actions are mediated, at least in part, by the adenylyl cyclase system. The comparatively slow induction of cAMP formation by VIP suggests that this peptide is involved in the control of cell differentiation and development rather than the ovulatory process.  相似文献   

7.
Regeneration of peripheral nerves depends on the abilities of rejuvenating axons to migrate at the injury site through cellular debris and altered extracellular matrix, and then grow along the residual distal nerve sheath conduit and reinnervate synaptic targets. Considerable evidence suggest that glial cells participate in this process, although the mechanisms remain to be clarified. In cell culture, regenerating neurites secrete PACAP, a peptide shown to induce the expression of the protease tissue plasminogen activator (tPA) in neural cell types. In the present studies, we tested the hypothesis that PACAP can stimulate peripheral glial cells to produce tPA. More specifically, we addressed whether or not PACAP promoted the expression and activity of tPA in the Schwann cell line RT4-D6P2T, which shares biochemical and physical properties with Schwann cells. We found that PACAP dose- and time-dependently stimulated tPA expression both at the mRNA and protein level. Such effect was mimicked by maxadilan, a potent PAC1 receptor agonist, but not by the PACAP-related homolog VIP, suggesting a PAC1-mediated function. These actions appeared to be mediated at least in part by the Akt/CREB signaling cascade because wortmannin, a PI3K inhibitor, prevented peptide-driven CREB phosphorylation and tPA increase. Interestingly, treatment with BDNF mimicked PACAP actions on tPA, but acted through both the Akt and MAPK signaling pathways, while causing a robust increase in PACAP and PAC1 expression. PACAP6-38 totally blocked PACAP-driven tPA expression and in part hampered BDNF-mediated effects. We conclude that PACAP, acting through PAC1 receptors, stimulates tPA expression and activity in a Akt/CREB-dependent manner to promote proteolytic activity in Schwann-cell like cultures.  相似文献   

8.
The hormonal and second messenger regulation of plasminogen activator (PA) activities in avian granulosa and theca cells has been documented. However, the physiological role(s) of PAs in the avian ovary remains poorly understood. The present studies were designed to evaluate PA activity in hen granulosa cells collected from the most mature (F1) preovulatory follicle at three discrete time points relative to a spontaneous ovulation and from follicles collected at various stages of follicular development. Levels of PA activity in the granulosa layer of the F1 follicle declined by greater than 90% as follicles were collected closer to their anticipated time of ovulation (e.g., from 17-16 h to 0.75-0.15 h; p less than 0.05). Timing of tissue collection was confirmed by evaluation of serum progesterone levels, which peaked as expected at the 6-5-h time point. During follicular development, PA activity was several times greater in rapidly growing follicles (6-12 mm, 1-3 wk prior to ovulation) than in slowly growing (1-5 mm) or preovulatory (F3 and F1) follicles (p less than 0.05). Granulosa cells of these rapidly growing follicles also incorporated significantly higher levels of 3H-thymidine than did granulosa cells of mature follicles (p less than 0.05), suggesting a higher level of DNA synthesis. Similarly, granulosa cells of the mitotically active germinal disc region of the F1 granulosa layer were found to possess at least 3-fold higher (p less than 0.05) levels of PA activity and a 2-fold greater level of 3H-thymidine incorporation than the more mature granulosa cells isolated from the remaining F1 granulosa layer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
During ovarian follicle growth, there is expansion of the basal lamina and changes in the follicular extracellular matrix (ECM) that are mediated in part by proteolytic enzyme cascades regulated by tissue-type plasminogen activator (tPA) and urokinase plasminogen activator (uPA). One PA inhibitor, serine protease inhibitor-E2 (SERPINE2) is expressed in granulosa but not theca cells, and expression changes with follicle development. In this study, we hypothesized that PA and SERPINE2 expression/secretion by granulosa cells are regulated by FSH and growth factors. SERPINE2 mRNA and protein levels, tPA gene expression and uPA secretion were stimulated by FSH. Insulin-like growth factor-I stimulated SERPINE2 secretion and uPA activity, and decreased secreted tPA activity and gene expression. Bone morphogenetic protein-7 increased SERPINE2 secretion and expression and tPA secretion. In contrast, fibroblast growth factor-2 inhibited tPA secretion and SERPINE2 secretion and expression. Epidermal growth factor inhibited SERPINE2 secretion and expression, but increased secreted tPA activity. Estradiol and SERPINE2 secretion were highly positively correlated, but estradiol did not alter SERPINE2 expression. These data demonstrate that SERPINE2 expression and protein secretion are regulated by FSH and growth factors in non-luteinizing bovine granulosa cells. As estradiol is a known marker of follicle health, and SERPINE2 is an anti-apoptotic factor, we propose that SERPINE2 is involved in the regulation of atresia in bovine follicles.  相似文献   

10.
We examined whether plasminogen activators (PAs) are produced by bovine cumulus-oocyte complexes (COCs) during maturation in vitro. The effects of epidermal growth factor (EGF) on production of PAs in oocytes and cumulus cells were also examined. When COCs were cultured for 24 h with 30 ng/ml EGF, three plasminogen-dependent lytic zones (58.5 +/- 3.5 kDa, 79.0 +/- 3.0 kDa, and 113.5 +/- 6.5 kDa) were observed. Addition of amiloride, a competitive inhibitor of urokinase-type PA (uPA), to the zymogram eliminated the activity of the 58.5 +/- 3.5-kDa zone, suggesting that this band is a uPA. However, since the activity of the remaining two bands was not eliminated, it was suggested that the 79.0 +/- 3.0-kDa band is a tissue-type PA (tPA) and the 113.5 +/- 6.5-kDa band is possibly a tPA-PA inhibitor (tPA-PAI) complex. In COCs before culture, however, no activity of PAs was detected. At 6 h of culture, the same level of uPA activity was detected in COCs cultured both in the absence and in the presence of EGF. The uPA activity was increased at 12 h of culture but without further increase at 24 h of culture, with higher activity in the presence than in the absence of EGF. The activity of tPA and tPA-PAI was first detected at 24 h of culture in the absence of EGF. In the presence of EGF, however, some activity of tPA-PAI was detected at 12 h of culture. At 24 h of culture, the activity of all PAs was detected in cumulus cells, but only uPA activity was detected in oocytes, with higher activity in the presence than in the absence of EGF. The uPA activity in oocytes was not detected when they were cultured without cumulus cells in either the presence or absence of EGF, although cumulus expansion was stimulated by EGF, exhibiting a time-course similar to that observed in PA production. These results suggest that uPA, tPA, and tPA-PAI are all produced by bovine COCs, but only uPA by oocytes, during maturation in vitro. However, cumulus cells play an essential role or roles in the production of uPA by oocytes, and EGF enhances the roles of cumulus cells.  相似文献   

11.
In order to determine the mechanism by which parathyroid hormone (PTH) stimulates plasminogen activator (PA) activity in rat osteoblasts, we investigated the effect of human PTH(1-34) [hPTH(1-34)] on the synthesis of mRNAs for tissue-type PA (tPA), urokinase-type PA (uPA), and PA inhibitor-1 (PAI-1), and on release of PA activity and PAI-1 protein in both normal rat calvarial osteoblasts and UMR 106-01 osteogenic sarcoma cells. hPTH(1-34) (0.25-25 nM) decreased PAI-1 mRNA and protein, and increased PA activity in both cell types in a dose-dependent manner with ED50 of about 1 nM for both responses. Forskolin and isobutylmethylxanthine also stimulated PA activity and decreased PAI-1 protein and mRNA in both cell types. hPTH(1-34) did not show any consistent effect on tPA and uPA mRNA in calvarial osteoblasts, but a modest (two-fold) increase of both mRNAs was observed in UMR 106-01 cells treated with 25 nM hPTH(1-34). However, when protein synthesis was inhibited with 100 microM cycloheximide, the increase of tPA and uPA mRNA by hPTH(1-34) was enhanced in UMR 106-01 cells and became evident in calvarial osteoblasts. Fibrin autography also revealed that hPTH(1-34) increases tPA and uPA activity, especially after cycloheximide treatment in UMR 106-01 cells. These results strongly suggest that PTH increases PA activity predominantly by decreasing PAI-1 protein production through a cyclic adenosine monophosphate (cAMP)-dependent mechanism in rat osteoblasts. The reduction of PAI-1 protein by PTH results in enhanced action of both tPA and uPA, and would contribute to the specific roles of these PAs in bone.  相似文献   

12.
Vasoactive intestinal peptide (VIP) and VIPergic nerve fibers are present in the ovaries of several mammalian species, suggesting a possible ovarian action of VIP. We have investigated the direct effects of synthetic porcine VIP on rat granulosa cell steroidogenesis in vitro. The cells were obtained from immature, hypophysectomized, estrogen-primed rats, and cultured in a serum-free medium for 24 h in the absence or presence of varying amounts of VIP. Medium steroids were then determined by specific radioimmunoassay. Vasoactive intestinal peptide dose-dependently stimulated progesterone, 20 alpha-hydroxypregn-4-ene-3-one (20 alpha-OH-progesterone), and estrogen production with an approximate ED50 value of 3 X 10(-8) M. Maximum steroid production induced by VIP ranged from 15% to 28% of that seen with maximal follicle-stimulating hormone (FSH) stimulation. In contrast to the ability of FSH to induce luteinizing hormone (LH) receptor formation, treatment with VIP did not increase [125I]iodo-human chorionic gonadotropin (hCG) binding to granulosa cells. The ability of several gastrointestinal peptides, having 17-44% sequence identity to VIP, to stimulate granulosa cell steroidogenesis was also tested. The most closely related peptide, PHM-27 was less effective than VIP, and the least closely related, secretin and glucagon, were ineffective at 10(-6) M. Vasoactive intestinal peptide seems to act at least partly through cyclic 3',5'-adenosine monophosphate (cAMP)-dependent processes: addition of a phosphodiesterase inhibitor significantly potentiated the VIP stimulation of granulosa cell steroidogenesis, and VIP was capable of producing a dose- and time-dependent increase in both intracellular and medium cAMP levels. Vasoactive intestinal peptide stimulation of estrogen production seemed to be a result of increased aromatase activity. The increased progesterone production was associated with increased pregnenolone production, increased rate of conversion of pregnenolone to progesterone via 3 beta-hydroxysteroid dehydrogenase, and decreased metabolism of progesterone via 20 alpha-hydroxysteroid dehydrogenase. These results indicate that VIP exerts a specific action on granulosa cells to increase estrogen and progestin production. The observed direct effects of VIP, coupled with its identification in the ovary, suggest that VIP may be a physiologically important regulator of ovarian activity.  相似文献   

13.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are important neuropeptides in the control of lung physiology. Both of these commonly bind to specific G protein coupled receptors named VPAC(1)-R and VPAC(2)-R, and PAC(1)-R (with higher affinity for PACAP). VIP and PACAP have been implicated in the control of cell proliferation and tumor growth. This study examined the presence of VIP and PACAP receptors in human lung cancer samples, as well as the functionality of adenylyl cyclase (AC) stimulated by both peptides. Results from RT-PCR and immunoblot experiments showed the expression of VPAC(1)-, VPAC(2)- and PAC(1)-R in lung cancer samples. Immunohistochemical studies showed the expression of VPAC(1) and VPAC(2) receptors. These receptors were positively coupled to AC, but the enzyme activity was impaired as compared to normal lung. There were no changes in Galpha(s) or Galpha(i) levels. Present results contribute to a better knowledge of VIP/PACAP actions in lung cancer and support the interest for the development of VIP/PACAP analogues with therapeutic roles.  相似文献   

14.
Previous studies from our laboratory have demonstrated that OVCA 433 human ovarian carcinoma cells are glucocorticoid responsive by several criteria and contain high affinity, saturable, steroid-specific glucocorticoid receptors. These cells secrete both mammalian plasminogen activators (PAs), urokinase (uPA) and tissue-type PA (tPA). Treatment of OVCA 433 cells with 1 x 10(-7) M dexamethasone (Dex) for 4 days led to 77% and 83% reductions in the extracellular activities of uPA and tPA, respectively, released into serum-free conditioned medium during a 1-h period. Dex treatment led to a 71% decrease in the rate of extracellular uPA antigen accumulation, as determined by enzyme-linked immunosorbent assay, as well as a 73% reduction in steady state uPA mRNA levels. In contrast, Dex treatment led to only a 42% decrease in the rate of extracellular tPA antigen accumulation and a 48% decrease in tPA mRNA levels; such decreases were insufficient to account for the 83% reduction in tPA activity. Thus, while Dex-induced decreases in uPA antigen and mRNA levels accounted for all but 6% of the decrease in uPA activity, a large discrepancy existed between the magnitudes of decreased tPA activity and decreased tPA antigen and mRNA levels. OVCA 433 cells produce both PAI-1 and PAI-2, two specific PA inhibitors. Treatment of cells with 1 x 10(-7) M Dex for 4 days led to a 3.3-fold increase in the rate of extracellular PAI-1 accumulation, with little or no effect on PAI-2 accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and tissue plasminogen activator (tPA) play important roles in neuronal migration and survival. However, a direct link between the neurotrophic effects of PACAP and tPA has never been investigated. In this study, we show that, in PC12 cells, PACAP induced a 9.85-fold increase in tPA gene expression through activation of the protein kinase A- and protein kinase C-dependent signaling pathways. In immature cerebellar granule neurons (CGN), PACAP stimulated tPA mRNA expression and release of proteolytically active tPA. Immunocytochemical labeling revealed the presence of tPA in the cytoplasm and processes of cultured CGN. The inhibitory effect of PACAP on CGN motility was not affected by the tPA substrate plasminogen or the tPA inhibitor plasminogen activator inhibitor-1. In contrast, plasminogen activator inhibitor-1 significantly reduced the stimulatory effect of PACAP on CGN survival. Altogether, these data indicate that tPA gene expression is activated by PACAP in both tumoral and normal neuronal cells. The present study also demonstrates that PACAP stimulates the release of tPA which promotes CGN survival by a mechanism dependent of its proteolytic activity.  相似文献   

16.
Plasminogen activators (PAs), were estimated qualitatively and quantitatively in two different clonal murine skeletal muscle cell lines. Both cell lines produced the two major types of PAs found in mammalian cells, urokinase-type (uPA) and tissue type (tPA). These two lines are models for the study of myogenesis in vitro, but differ in several growth and differentiation characteristics. Because of their possible involvement in these characteristics we assayed the expression of PAs in both cell systems during development in culture. Utilizing fibrin zymography two isoforms of tPA were detected. One co-migrated with human tPA at 75 kd and another may represent a tPA:inhibitor complex at 105 Kd. Several isoenzymes of uPA were detected and these changed depending on whether cell homogenates or conditioned medium was analyzed and whether myogenic cells were at single-cell myoblast or multi-nucleated myotube stage. Species-specific antisera to mouse uPA identified 4 uPA bands in muscle cell medium and 5 in cell layers. Antigenic uPA bands also varied depending on stage of myogenesis. Quantitative amidolytic studies using chromogenic substrates showed that maximal PA activity, both uPA and tPA, occurred at the time of myoblast fusion. Furthermore, uPA activity in membranes increased during myogenesis, while both uPA and tPA in medium decreased after fusion. These studies indicate that muscle PA expression is developmentally regulated and may correlate with growth and differentiation in skeletal muscle.  相似文献   

17.
18.
促性腺激素诱导猕猴排卵周期中卵巢纤溶酶...   总被引:3,自引:1,他引:2  
刘以训  邹如金 《生理学报》1991,43(5):472-479
Changes of plasminogen activator (PA) and its inhibitor (PAI-1) activity and antigen have been investigated during PMSG/hCG induced ovulation in rhesus monkeys. It has been demonstrated that the ovarian tissue type PA (tPA) activity, which reaches maximum prior to ovulation and declines thereafter, is closely related to follicular rupture; significant increases in urokinase type PA (uPA) only occurs in granulosa cells after ovulation. Since the secretory activity of ovarian PAI-1 reaches its peak level 12-24 h earlier than tPA the rapid decrease in PAI-1 activity in the approach of ovulation is correlated with the elevation of tPA activity. It is, therefore, suggested that a counterbalance of tPA and PAI-1 activity within the ovary may play an important role in the ovulation mechanism, whereas uPA may be involved in the regulation of corpus luteum formation.  相似文献   

19.
Abstract: Cytochemical analysis demonstrated that a high percentage of human Y-79 retinoblastoma cells displayed a specific labeling by the biotinyl derivative of pituitary adenylate cyclase-activating polypeptide (PACAP), a novel neuropeptide of the secretin-vasoactive intestinal peptide (VIP) family of peptides. In cell membranes, the two molecular forms of PACAP, the one with 38 (PACAP 38) and the other with 27 (PACAP 27) amino acids, displaced the binding of 125I-PACAP 27 with IC50 values in the picomolar range and increased adenylyl cyclase activity by 100-fold with EC50 values of 27 and 180 p M , respectively. VIP, human peptide histidine-isoleucine, glucagon, and secretin were much less effective and potent in both receptor assays. The PACAP receptor antagonists PACAP 6–27 and PACAP 6–38 and an antiserum directed against the stimulatory G protein Gs inhibited the PACAP stimulation of adenylyl cyclase. In intact cells, both PACAPs and VIP failed to stimulate the phosphoinositide hydrolysis, whereas in cell membranes PACAP 38, but not the other peptides, produced a modest increase (40%) of inositol phosphate formation with an EC50 value of 22 n M . However, this effect was not antagonized by either PACAP 6–38 or PACAP 6–27. These data demonstrate the presence in human Y-79 retinoblastoma cells of specific PACAP receptors and provide further evidence that PACAP may act as a neurotransmitter/neuromodulator in mammalian retina.  相似文献   

20.
Summary The observation that tissue-type plasminogen activator (tPA) activity increased dramatically in preovulatory follicles has led to the hypothesis that plasminogen activation is causally related to follicle rupture. With immunohistochemistry, we have studied the appearance of tPA in ovaries of immature rats induced to ovulate and in adult cycling rats. Treatment of immature female rats with a single dose of pregnant mare serum gonadotropin (PMSG) induced follicular maturation. A subsequent human chorionic gonadotropin (hCG) injection resulted in follicle rupture 12–14 h later. PMSG treatment alone did not induce appearance of tPA-immunoreactive cells in any ovarian compartment. After hCG stimulation, however, theca cells, granulosa cells, and oocytes of pre- and postovulatory follicles displayed distinct tPA immunoreactivity. Fibroblastlike cells in the theca layers and tunica albuginea of the follicle apex also demonstrated localized cytoplasmic tPA reactivity. In addition to tPA synthesis in preovulatory follicles, hCG also induced tPA staining in the theca (but not granulosa) layers of non-ovulatory follicles. At 24 h after hCG treatment, there was a marked tPA staining in developing corpora lutea, ovulated ova, and oviductal epithelium. Ovaries from regularly cycling adult rats displayed a similar ovulation-related pattern of tPA immunostaining. The appearance of tPA in different cell types of the preovulatory follicle and in the fibroblast-like cells at the follicle apex, strengthens the hypothesis of a direct involvement of tPA in follicle rupture. Presence of tPA in postovulatory oocytes, cumulus cells, and surrounding oviductal epithelium may also indicate a role for tPA in the transfer of eggs in the oviduct.This work was supported by NIH Research Grants HD-14084; 12303  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号