首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Summary The effect of gamma radiation on red blood cells have been examined using a spin labeling method. For this purpose two spin labels were used to monitor membrane fluidity: methyl 5-doxylpalmitate (Met 5-DP) and methyl 12-doxylstearate (Met 12-DS). The irradiation of red cells with the doses of 200 and 500 Gy caused decrease of microviscosity in certain regions of lipid bilayer (as indicated by Met 5-DP and Met 12-DS spectra) but did not affect lipid order parameter. The behavior of two other spin labels, maleimide(4-malei-mido-2,2,6,6-tetramethylpiperidine-1-oxyl) and TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl) indicated:1) conformational changes of membrane proteins,2) modification of cell internal peptides and proteins,3) decreased internal viscosity of red blood cells.  相似文献   

2.
The effect of lipopolysaccharide (LPS, endotoxin), isolated from Proteus mirabilis S1959 strain, on red blood cell (RBC) membranes in whole cells as well as on isolated membranes was studied. Lipid membrane fluidity, conformational state of membrane proteins and the osmotic fragility of RBCs were examined using electron paramagnetic resonance spectroscopy and spectrophotometric method. Lipid membrane fluidity was determined using three spin-labeled fatty acids: 5-, 12- and 16-doxylstearic acid (5-, 12- and 16-DS). The addition of LPS S1959 to RBC suspension resulted in an increase in membrane fluidity, as indicated by 12-DS. At the concentrations of 0.5 and 1 mg/ml, LPS treatment led to a significant (P<0.05) increase in lipid membrane fluidity in the deeper region of lipid bilayer (determined by 12-DS). The conformational changes in membrane proteins were determined using two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The highest concentration of endotoxin significantly (P<0.05) decreased the relative rotational correlation time of ISL and significantly (P<0.05) increased the osmotic fragility of RBCs. The effect of endotoxin was much more profound in isolated membranes than in intact cells treated with LPS. At the concentrations 0.5 and 1 mg/ml, LPS led to a significant increase in h(w)/h(s) ratio. These results indicated increased membrane protein mobility, mainly in the spectrin-actin complex in membrane cytoskeleton. These data suggest that LPS-induced alterations in membrane lipids and cytoskeleton proteins of RBCs lead to loss of membrane integrity.  相似文献   

3.
Alterations in red blood cell (RBC) plasma membranes, i.e. in lipids and proteins, and osmotic fragility of these cells after treatment with Proteus mirabilis O29 endotoxin (lipolysaccharide (LPS)) were examined using a spin labelling method. At the highest concentration of LPS, insignificantly decreased fluidity of membrane lipids was observed. Changes in conformation of membrane proteins were determined by two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (MSL) and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The analysis of spectra of MSL and ISL showed modifications in membrane proteins in red blood cells treated with the highest concentration of lipopolysaccharide. On the other hand, in the case of isolated membranes, disturbances in membrane were observed for all concentrations of LPS. The alterations in membrane lipids and proteins are paralleled in a significant rise in osmotic fragility of RBCs upon endotoxin treatment. These results provide experimental evidence that P. mirabilis O29 LPS causes deleterious changes in membranes of human red blood cells. They show that action of lipopolysaccharide mainly concerns the membrane cytoskeleton.  相似文献   

4.
Intact, viable ultransformed 3T3 and transformed SV101-3T3 cells were labeled with fatty acid spin labels and with 2,2,6,6-tetramethylpiperidine-1-oxyl in order to measure the fluidity properties of membrane lipids. Both cell types were grown in regular calf serum and in a lipid-depleted serum supplemented with either oleate or elaidate. The temperature dependence of the spectra obtained revealed inflections that correlate with the temperature below which agglutination with concanavalin A is inhibited, and another inflection that correlates with the temperature below which agglutination with wheat germ agglutinin is inhibited, suggesting that (a) the lipid phase(s) in the vicinity of the receptor(s) for these two lectins differ, and (b) a fluid membrane in the vicinity of the lectin receptor(s) is necessary for agglutination with either concanavalin A or wheat germ agglutinin. Studies with a partially characterized plasma membrane fraction suggest that the plasma membrane fluidity parameters closely resemble those of the intact cell. 3T3 and SV101-3T3 cells show virtually identical fluidity profiles by all of the tests we have applied.  相似文献   

5.
In this work membrane fluidity alterations in synaptosomes, isolated from mice brain tissue, at chronic injection of neuroprotectors Dimebon and NT-1505 in vivo were studied. Membrane microviscosity was measured by electron paramagnetic resonance spin labeling of 2,2,6,6-tetramethyl-4-capryloyl-oxylpiperidine-1-oxyl (lipid probe) and 5,6-benzo-2,2,6,6-tetramethyl-1,2,3,4-tetrahydro-γ-carboline-3-oxyl (near protein probe). It was shown that the neuroprotectors Dimebon and NT-1505 affect a membrane structure. Despite the difference in membrane structures, fluidity of the lipid bilayer in time returned to control values.  相似文献   

6.
Four different thiol reagents: p-chloromercuribenzoic acid (pCMB), mercuric chloride (HgCl2), N-ethylmaleimide (NEM), and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were employed as agents modifying the transport of a hydrophilic and hydrophobic non-electrolyte spin labels: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) into bovine erythrocytes. Gamma-irradiation of erythrocytes amplified the effects of pCMB, HgCl2 and NEM of inhibition of TEMPOL transport and attenuated them in the case of TEMPO transport. These results suggest that the transport of TEMPOL across the erythrocyte membrane is controlled by both superficially and more deeply located membrane -SH groups while only superficial -SH groups control the transport of TEMPO. The lower extent of inhibition of TEMPO transport indicates a higher contribution of diffusion through the lipid phase to the transport of TEMPO across the erythrocyte membrane as compared with TEMPOL.  相似文献   

7.
Interaction of betulonic acid chloride with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 3-amino-2,2,5,5-tetramethylpyrrolidine-1-oxyl, and 3-aminomethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl yielded the corresponding triterpene amides. The synthesized derivatives of betulonic acid were shown to exhibit a cytotoxic activity on models of the CEM-13, U-937, and MT-4 tumor cells. The concentration of the most active N-[3-oxo-28-norlup-20(29)-en-17-carbamoyl-(2,2,6,6-tetramethylpiperidine-4-yl)-1-oxyl that inhibited survival of the tumor cells by 50% (CCID50) proved to be 5.7–33.1 μM.  相似文献   

8.
Human blood platelets have been labeled with the sulfhydryl-specific spin labels, 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl and 3-maleimido-2,2,5,5-tetramethylpyrrolidine-1-oxyl. First, the ESR spectra of platelets labeled with either reagent revealed two classes of sulfhydryl groups, a mobile class and an immobile class. Second, when spin-labeled platelets were titrated with high concentrations of potassium ferricyanide (greater than 10(-3) M), there was a decrease in the peak heights of the mobile class of sulfhydryl groups due to dipole-dipole exchange. Third, plots of peak heights of the mobile class versus ferricyanide concentration revealed three classes of mobile sulfhydryl groups compared to a single immobile class. This technique may be used to show the relative locations of spin-labeled groups on cell surfaces.  相似文献   

9.
Metabolism of different nitroxides with piperidine structure used as spin labels in electron spin resonance (ESR) studies in vitro and in vivo was investigated in human keratinocytes of the cell line HaCaT by GC and GC-MS technique combined with S-band ESR. Besides the well known reduction of the nitroxyl radicals to the ESR silent hydroxylamines as primary products our results indicate the formation of the corresponding secondary amines. These reductions are inhibited by the thiol blocking agent N-ethylmaleimide and by the strong inhibitors of the thioredoxin reductase (TR) 2-chloro-2,4-nitrobenzene and 2,6-dichloroindophenol. The competitive inhibitor TR inhibitor azelaic acid and the cytochrome P-450 inhibitor metyrapone lack any effects. The rates of reduction to the hydroxylamines and secondary amines were dependent on the lipid solubility of the nitroxides. Therefore, it can be assumed that the nitroxides must enter the cells for their bioreduction. The mostly discussed intracellular nitroxide reducing substances ascorbic acid and glutathione were unable to form the secondary amines. In conclusion, our results suggest that the secondary amine represents one of the major metabolites of nitroxides besides the hydroxylamine inside keratinocytes formed via the flavoenzyme thioredoxin reductase most probably. Further metabolic conversions were detected with 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl and the benzoate of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl as substrates.  相似文献   

10.
Changes in fluidity of membranes isolated from the microsomal and crude synaptosomal fractions which were obtained from forebrain tissue of mice bearing experimental Alzheimer’s disease induced with olfactory bulbectomy were studied. Membrane microviscosity was measured by electron paramagnetic resonance with 2,2,6,6-tetramethyl-4-capryloyl-oxypiperidine-1-oxyl and 5,6-benzo-2,2,6,6-tetramethyl-1,2,3,4-tetrahydro-γ-carboline-3-oxyl as spin labeling. Phasic alterations in relative fluidity were found during the development of experimental Alzheimer’s disease pathology. These changes correlate with the stages of “clinical” features. Main abnormalities were related to structural changes in near-protein region of the lipid bilayer.  相似文献   

11.
Ovalbumin (OVA) has been used continuously as the model antigen in numerous studies of immune reactions and antigen processing, very often encapsulated into liposomes. The purpose of this work was to study the possible interactions of spin-labelled OVA and lipids in liposomal membranes using electron spin resonance (ESR) spectroscopy. OVA was covalently spin-labelled with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), characterized and encapsulated into multilamellar, negatively charged liposomes. ESR spectra of this liposomal preparation gave evidence for the interaction of OVA with the lipid bilayers. Such an interaction was also evidenced by the ESR spectra of liposomal preparation containing OVA, where liposomes were spin-labelled with n-doxyl stearic acids. The spin-labelled OVA retains its property to bind specific anti-OVA antibodies, as shown by ESR spectroscopy, but also in ELISA for specific anti-OVA IgG.  相似文献   

12.
The interaction of (+)-catechin with a lipid bilayer was examined by the spin probe method. The spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was dissolved in an aqueous dipalmitoylphosphatidylcholine (DPPC) dispersion containing (+)-catechin. The temperature dependence of the TEMPO parameter was measured. The increase of this parameter due to pretransition was eliminated by the addition of (+)-catechin, suggesting that it was adsorbed to the lipid membrane surface in the gel state, which hindered the change of the membrane from a flat to wavy structure. In the temperature region of the main transition, the TEMPO parameter increased rapidly, then gradually with increasing temperature, which could be explained by the eutectic phase diagram. The rotational correlation time of a spin probe 16-doxylstearic acid and the order parameter of 5-doxylstearic acid in the aqueous dispersion system of egg yolk phosphatidylcholine revealed that the motion of the alkyl chain in the liquid crystal state was hindered in the center of the membrane as well as near the surface by the adsorption of (+)-catechin.  相似文献   

13.
Carp erythrocytes were treated with p-chloromercuribenzoate or N-ethylmaleimide. It was observed that these thiol-group inhibitors decreased the transport of spin-labelled hydrophilic compound, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and increased the transport rate of more hydrophobic 2,2,6,6-tetramethylpiperidine-1-oxyl.  相似文献   

14.
The membrane surface potential of mycoplasma cells was measured by changes in the partition between the membrane and the aqueous environment of the impermeable cationic amphipatic spin probe 4-(N,N-dimethyl-N-nonyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl (CAT9). Upon energization of glycolyzing mycoplasma cells, the outer surface of these membranes becomes more negatively charged. The effects of uncouplers further indicate that this change in surface potential appear to be dependent on the existence of a delta pH across the membranes.  相似文献   

15.
Synthetic dipalmitoyl phosphatidylserine exhibits a sharp chain-melting transition temperature at 51 degrees C as judged by partitioning of the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl. Phase diagrams representing lateral phase separations in binary mixtures of dipalmitoyl phosphatidylserine with dipalmitoyl phosphatidylcholine as well as with dimyristoyl phosphatidylcholine are derived from paramagnetic resonance determinations of 2,2,6,6,-tetramethylpiperidine-1-oxyl partitioning, freeze-fracture electron microscopic studies and theoretical arguments that limit the general form of acceptable phase diagrams. The reported phase diagrams are the first to describe binary mixtures in which one lipid is charged and the second lipid uncharged. These phase diagrams also are the first to include the problem of solid phases with different crystalline conformations as it relates to the occurrence of a pretransition in phosphatidylcholines and its absence in phosphatidylserines. In addition to the phase diagrams reported here for these two binary mixtures, a brief theoretical discussion is given of other possible phase diagrams that may be appropriate to other lipid mixtures with particular consideration given to the problem of crystalline phases of different structures and the possible occurrence of second-order phase transitions in these mixtures.  相似文献   

16.
The antifungal activity of nitroxyl radicals-derivatives of 2,2,6,6-tetramethylpiperidine-1-oxyl with reactive substituents 4-isothiocyanato-, 4-isocyano-, and 4-isoselenocyanato- and of N-formyl-, N-thioformyl-, N-selenoformyl-derivatives of 2,2,6,6-tetramethylpiperidine was investigated. Those of the above compounds, which contain a sulfur or selenium atom are the most active against four fungus plant patogens: Botrytiscinerea, Fusariumculmorum, Phytophthoracactorum, Rhizoctoniasolani. 4-Isoselenocyanato-2,2,6,6-tetramethylpiperidine-1-oxyl proved to be the most active compound.  相似文献   

17.
Temperature dependence for partitioning of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) between aqueous and lipid components of whole leaf tissue was measured. TEMPO is an electron spin resonance nitroxide label that has been used in model systems to detect membrane phase separations. Measurements were made on chilling-sensitive tomato leaves, frost-sensitive potato leaves, and frost-hardy and supercooled wheat leaves. The results suggest a membrane phase separation at 11 C in tomato, 3 C in potato, and −11 C in wheat.  相似文献   

18.
The prooxidative effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) were observed in human erythrocytes. Incubation of red blood cells with the membrane-permeable TEMPO leads to a decrease in the concentration of intracellular reduced glutathione, accompanied by the reduction of TEMPO. Extracellular ferricyanide inhibited the loss of glutathione and reduction of TEMPO. TEMPO induced glutathione release from the cells and oxidation of hemoglobin to methemoglobin; ferricyanide prevented these effects. These results indicate that TEMPO may act as an oxidant to erythrocytes, whilst extracellular ferricyanide protects against its effects.  相似文献   

19.
The present study aims to determine the effect of bilayer composition on oxidative damage and the protection against it in lipid multicomponent membranes. Irradiation damage in 200-nm liposomes and the protection provided by the nitroxide radicals, 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) were assessed by monitoring several chemical and physical parameters. Liposomes were prepared in four different lipid compositions (mole ratios), DPPC:DPPG 10:1; DPPC:DPPG:cholesterol 10:1:4; EPC:EPG 10:1; and EPC:EPG:cholesterol 10:1:4, and γ-irradiated with a dose of 32 kGy. Lipid degradation was determined by HPLC and GC analyses, whereas size and differential scanning calorimetry measurements were used to monitor physical changes in the liposomal dispersions. The results indicate that: (1) addition of 5 mM Tempo or Tempol, or freezing of the sample inhibited radiation-induced lipid degradation; (2) Tempo and Tempol caused neither physical nor chemical changes in the liposomal dispersions; and (3) both nitroxides prevented or reduced some of the radiation-induced changes in thermotropic characteristics of the liposomes, preventing a shift in the temperature of the maximum of the main phase transition (Tm).  相似文献   

20.
Two spin-labeled analogues of AMP and NAD+ were synthesized, in which a perdeuterated nitroxide radical (4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPAMINE) was attached to C-6 or C-8 position of the adenine ring. The ESR spectra of these derivatives exhibit a 4-fold increase in sensitivity and a concomitant decrease in line-width as compared to the corresponding protonated analogues. The improved resolution of composite spectra consisting of freely tumbling and immobilized components is demonstrated in ternary complexes of the spin-labeled NAD+ derivatives with lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) and oxalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号