首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of the focal adhesion kinase (FAK) to integrate signals from extracellular matrix and growth factor receptors requires the integrity of Tyr397, a major autophosphorylation site that mediates the Src homology 2-dependent binding of Src family kinases. However, the precise roles played by FAK in specific Src-induced pathways, especially as they relate to oncogenic transformation, remain unclear. Here, we investigate the role of FAK in v-Src-induced oncogenic transformation by transducing temperature-sensitive v-Src (ts72v-Src) into p53-null FAK+/+ or FAK-/- mouse embryo fibroblasts (MEF). At the permissive temperature (PT), ts72v-Src induced abundant tyrosine phosphorylation, morphological transformation and cytoskeletal rearrangement in FAK-/- MEF, including the restoration of cell polarity, typical focal adhesion complexes, and longitudinal F-actin stress fibers. v-Src rescued the haptotactic, linear directional, and invasive motility defects of FAK-/- cells to levels found in FAK+/+ or FAK+/+-[ts72v-Src] cells, and, in the case of monolayer wound healing motility, there was an enhancement. Src activation failed to increase the high basal tyrosine phosphorylation of the Crk-associated substrate, CAS, found in FAK-/- MEF, indicating that CAS phosphorylation alone is insufficient to induce motility in the absence of FAK- or v-Src-induced cytoskeletal remodeling. Compared with FAK+/+[ts72v-Src] controls, FAK-/-[ts72v-Src] clones exhibited 7-10-fold higher anchorage-independent proliferation that could not be attributed to variations in either v-Src protein level or stability. Re-expression of FAK diminished the colony-forming activities of FAK-/-[ts72v-Src] without altering ts72v-Src expression levels, suggesting that FAK attenuates Src-induced anchorage independence. Our data also indicate that the enhanced Pyk2 level found in FAK-/- MEF plays no role in v-Src-induced anchorage independence. Overall, our data indicate that FAK, although dispensable, attenuates v-Src-induced oncogenic transformation by modulating distinct signaling and cytoskeletal pathways.  相似文献   

2.
v-Src-induced oncogenic transformation is characterized by alterations in cell morphology, adhesion, motility, survival, and proliferation. To further elucidate some of the signaling pathways downstream of v-Src that are responsible for the transformed cell phenotype, we have investigated the role that the calpain-calpastatin proteolytic system plays during oncogenic transformation induced by v-Src. We recently reported that v-Src-induced transformation of chicken embryo fibroblasts is accompanied by calpain-mediated proteolytic cleavage of the focal adhesion kinase (FAK) and disassembly of the focal adhesion complex. In this study we have characterized a positive feedback loop whereby activation of v-Src increases protein synthesis of calpain II, resulting in degradation of its endogenous inhibitor calpastatin. Reconstitution of calpastatin levels by overexpression of exogenous calpastatin suppresses proteolytic cleavage of FAK, morphological transformation, and anchorage-independent growth. Furthermore, calpastatin overexpression represses progression of v-Src-transformed cells through the G(1) stage of the cell cycle, which correlates with decreased pRb phosphorylation and decreased levels of cyclins A and D and cyclin-dependent kinase 2. Calpain 4 knockout fibroblasts also exhibit impaired v-Src-induced morphological transformation and anchorage-independent growth. Thus, modulation of the calpain-calpastatin proteolytic system plays an important role in focal adhesion disassembly, morphological transformation, and cell cycle progression during v-Src-induced cell transformation.  相似文献   

3.
Cellular transformation by v-Src is believed to be caused by aberrant activation of signaling pathways that are normally regulated by cellular Src. Using normal rat kidney cells expressing a temperature-sensitive mutant of v-Src, we examined the role of the Raf/MEK/ERK, phosphatidylinositol 3-kinase/Akt, and Rho pathways in morphological transformation and cytoskeletal changes induced by v-Src. Activation of v-Src elicited a loss of actin stress fibers and focal contacts. A decrease in the phosphorylation level of cofilin was detected upon v-Src activation, which is indicative of attenuated Rho function. Inhibition of MEK using U0126 prevented v-Src-induced disruption of the cytoskeleton as well as dephosphorylation of cofilin, whereas treatment with a phosphatidylinositol 3-kinase inhibitor had no protective effect. In normal rat kidney cells stably transformed by v-Src, we found that the chronic activation of MEK induces down-regulation of ROCK expression, thereby uncoupling Rho from stress fiber formation. Taken together, these results establish MEK as an effector of v-Src-induced cytoskeleton disruption, participating in v-Src-induced antagonism of the cellular function of Rho.  相似文献   

4.
The non-receptor tyrosine kinase FAK plays a key role at sites of cellular adhesion. It is subject to regulatory tyrosine phosphorylation in response to a variety of stimuli, including integrin engagement after attachment to extracellular matrix, oncogene activation, and growth factor stimulation. Here we use an antibody that specifically recognizes the phosphorylated form of the putative FAK autophosphorylation site, Tyr(397). We demonstrate that FAK phosphorylation induced by integrins during focal adhesion assembly differs from that induced by activation of a temperature-sensitive v-Src, which is associated with focal adhesion turnover and transformation. Specifically, although v-Src induces tyrosine phosphorylation of FAK, there is no detectable phosphorylation of Tyr(397). Moreover, activation of v-Src results in a net decrease in fibronectin-stimulated phosphorylation of Tyr(397), suggesting possible antagonism between v-Src and integrin-induced phosphorylation. Our mutational analysis further indicates that the binding of v-Src to Tyr(397) of FAK in its phosphorylated form, which is normally mediated, at least in part, by the SH2 domain of Src, is not essential for v-Src-induced cell transformation. We conclude that different stimuli can induce phosphorylation of FAK on distinct tyrosine residues, linking specific phosphorylation events to ensuing biological responses.  相似文献   

5.
6.
In viral Src (v-Src)-transformed cells, focal adhesion kinase (FAK) associates with v-Src by combined v-Src SH2 and gain-of-function v-Src SH3 domain binding to FAK. Here we assess the significance of the Arg-95 to Trp gain-of-function mutation in the v-Src SH3 domain through comparisons of Src-/- fibroblasts transformed with either Prague C v-Src or a point mutant (v-Src-RT) containing a normal (Arg-95) SH3 domain. Both v-Src isoforms exhibited equivalent kinase activity, enhanced Src-/- cell motility, and stimulated cell growth in both low serum and soft agar. The stability of a v-Src-RT.FAK signaling complex and FAK phosphorylation at Tyr-861 and Tyr-925 were reduced in v-Src-RT- compared with v-Src-transformed cells. v-Src but not v-Src-RT promoted Src-/- cell invasion through a reconstituted Matrigel basement membrane barrier and v-Src co-localized with FAK and beta(1) integrin at invadopodia. In contrast, v-Src-RT exhibited a partial perinuclear and focal contact distribution in Src-/- cells. Adenovirus-mediated FAK overexpression promoted v-Src-RT recruitment to invadopodia, the formation of a v-Src-RT.FAK signaling complex, and reversed the v-Src-RT invasion deficit. Adenovirus-mediated inhibition of FAK blocked v-Src-stimulated cell invasion. These studies establish that gain-of-function v-Src SH3 targeting interactions with FAK at beta(1) integrin-containing invadopodia act to stabilize a v-Src.FAK signaling complex promoting cell invasion.  相似文献   

7.
An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded.  相似文献   

8.
A number of oncogenes alter the regulation of the cell cycle and cell death, contributing to the altered growth of tumours. Expression of the v-Src oncoprotein in Rat-1 fibroblasts prevented cell cycle exit in response to growth factor withdrawal. Here we investigated whether survival of v-Src transformed cells in low serum is dependent on v-Src activity. We used a temperature sensitive v-Src to study the effect inactivating v-Src on transformed cells growing under low serum conditions. We found when we switched off v-Src the cells died by apoptosis characterised by activation of caspases and the stress-activated kinases, JNK (Jun N-terminal kinase) and p38 MAP (mitogen activated protein) kinase. We were able to prevent cell death by addition of serum or overexpression of Bcl-2. Thus v-Src transformed Rat-1 cells can be protected from apoptosis by serum, v-Src, or Bcl-2. We investigated how v-Src protects from apoptosis under these conditions. Amongst other effects, v-Src activates two kinases which have been shown to protect cells from apoptosis, phosphatidylinositol 3-kinase (PI3-K) and extracellular signal-regulated kinase (ERK1/2). We found that switching off v-Src led to a decrease in the activity of both PI3-K and ERK1/2, however, we found that adding a specific inhibitor of PI3-K (LY294002) to v-Src transformed Rat-1 cells grown in low serum induced apoptosis while a specific ERK kinase (MEK1) inhibitor (PD98059) had no effect. This suggests that v-Src protects from apoptosis under low serum conditions by activating PI3-K.  相似文献   

9.
10.
Activating the protein-tyrosine kinase of v-Src in BALB/c 3T3 cells results in rapid increases in the intracellular second messenger, diacylglycerol (DAG). v-Src-induced increases in radiolabeled DAG were most readily detected when phospholipids were prelabeled with myristic acid, which is incorporated predominantly into phosphatidylcholine. Consistent with this observation, v-Src increased the level of intracellular choline. No increase in DAG was observed when cells were prelabeled with arachidonic acid, which is incorporated predominantly into phosphatidylinositol. Inhibiting phosphatidic acid (PA) phosphatase, which hydrolyzes PA to DAG, blocked v-Src-induced DAG production and enhanced PA production, implicating a type D phospholipase. Consistent with the involvement of a type D phospholipase, v-Src increased transphosphatidylation activity, which is characteristic of type D phospholipases. Thus, v-Src-induced increases in DAG most likely result from the activation of a type D phospholipase/PA phosphatase-mediated signaling pathway.  相似文献   

11.
Resistance to anoikis is a characteristic of malignant cells with increased tumorigenesis and metastasis. Altered FAK activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers, but the mechanism of FAK in regulating anoikis is unknown. In this study, the resistance anoikis role of FAK and its downstream mediators was evaluated in the human lung cancer cell line A549. It has been shown that down regulation of FAK stimulates the apoptosis of cells and the down-regulation of p-ERK, p-PI3K, p-Src, and p-p38. Furthermore, in detached A549 cells, increased FAK phosphorylations (Tyr397, Tyr861, Tyr925) were detected in a time-dependent manner, and the specific inhibitors of MEK1, PI3K, and Src (PD98059, LY294002, and PP2) partly abolished the resistance to the anoikis characteristic of cancer cells. Altogether, our data suggested that Src is involved in the progress of detachment-induced FAK activation in lung tumor cells. PI3K/AKT, MAPK-ERK, and perhaps MAPK-p38 but not MAPK-JNK, appear to be the key downstream effectors of FAK in mediating cell survival. The increased FAK activity upon cell detachment may contribute to the metastasis potential of malignant tumors.  相似文献   

12.
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.  相似文献   

13.
While M-CSF-mediated MEK/ERK activation promotes osteoclast survival, the signaling pathway by which M-CSF activates MEK/ERK is unresolved. Functions for PI3K, Ras, and Raf have been implicated in support of osteoclast survival, although interaction between these signaling components has not been examined. Therefore, the interplay between PI3K, Ras and Raf in M-CSF-promoted MEK/ERK activation and osteoclast survival was investigated. M-CSF activates Ras to coordinate activation of PI3K and Raf/MEK/ERK, since Ras inhibition decreased PI3K activation and PI3K inhibition did not block M-CSF-mediated Ras activation. As further support for Ras-mediated signaling, constitutively active (ca) Ras promoted MEK/ERK activation and osteoclast survival, which was blocked by inhibition of PI3K or Raf. Moreover, PI3K-selective or Raf-selective caRas were only partially able to promote osteoclast survival when compared to parental caRas. We then examined whether PI3K and Raf function linearly or in parallel downstream of Ras. Expression of caPI3K increased MEK/ERK activation and promoted osteoclast survival downstream of M-CSF, supporting this hypothesis. Blocking Raf did not decrease osteoclast survival and MEK/ERK activation promoted by caPI3K. In addition, PI3K-selective Ras-mediated survival was not blocked by Raf inhibition. Taken together, our data support that Raf signaling is separate from Ras/PI3K signaling and PI3K signaling is separate from Ras/Raf signaling. These data therefore support a role for Ras in coordinate activation of PI3K and Raf acting in parallel to mediate MEK/ERK-promoted osteoclast survival induced by M-CSF.  相似文献   

14.
The Shaker family K(+) channel protein, Kv1.3, is tyrosine phosphorylated by v-Src kinase at Tyr(137) and Tyr(449) to modulate current magnitude and kinetic properties. Despite two proline rich sequences and these phosphotyrosines contained in the carboxyl and amino terminals of the channel, v-Src kinase fails to co-immunoprecipitate with Kv1.3 as expressed in HEK 293 cells, indicating a lack of direct Src homology 3- or Src homology 2-mediated protein-protein interaction between the channel and the kinase. We show that the adaptor proteins, n-Shc and Grb10, are expressed in the olfactory bulb, a region of the brain where Kv1.3 is highly expressed. In HEK 293 cells, co-expression of Kv1.3 plus v-Src with Grb10 causes a decrease in v-Src-induced Kv1.3 tyrosine phosphorylation and a reversal of v-Src-induced Kv1.3 current suppression, increase in inactivation time constant (tau(inact)), and disruption of cumulative inactivation properties. Co-expression of Kv1.3 plus v-Src with n-Shc did not significantly alter v-Src-induced Kv1.3 current suppression but reversed v-Src induced increased tau(inact) and restored the right-shifted voltage at half-activation (V(1/2)) induced by v-Src. The v-Src-induced shift in V(1/2) and increased tau(inact) was retained when Tyr(220), Tyr(221), and Tyr(304) in the CH domain of n-Shc were mutated to Phe (triple Shc mutant) but was reversed back to control values when either wild-type Shc or the family member Sck, which is not a substrate for Src kinase, was substituted for the triple Shc mutant. Thus the portion of the CH domain that includes Tyr(220), Tyr(221), and Tyr(304) may regulate a shift in Kv1.3 voltage dependence and inactivation kinetics produced by n-Shc in the presence of v-Src. Collectively these data indicate that Grb10 and n-Shc adaptor molecules differentially modulate the degree of Kv1.3 tyrosine phosphorylation, the channel's biophysical properties, and the physical complexes associated with Kv1.3 in the presence of Src kinase.  相似文献   

15.
v-Crk, an oncogene product of avian sarcoma virus CT10, efficiently transforms chicken embryo fibroblasts (CEF). We have recently reported that constitutive activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway plays a critical role in the v-Crk-induced transformation of CEF. In the present study we investigated the molecular mechanism by which v-Crk activates the PI3K/AKT pathway. First, we found that v-Crk promotes the association of the p85 regulatory subunit of PI3K with focal adhesion kinase (FAK) by inducing the phosphorylation of the Y397 residue in FAK. This FAK phosphorylation needs activation of the Src family tyrosine kinase(s) for which the v-Crk SH2 domain is responsible. v-Crk was unable to activate the PI3K/AKT pathway in FAK-null cells, indicating the functional importance of FAK. In addition, we found that H-Ras is also required for the activation of the PI3K/AKT pathway. The v-Crk-induced activation of AKT was greatly enhanced by the overexpression of H-Ras or its guanine nucleotide exchange factor mSOS, which binds to the v-Crk SH3 domain, whereas a dominant-negative mutant of H-Ras almost completely suppressed this activation. Furthermore, we showed that v-Crk stimulates the interaction of H-Ras with the Ras binding domain in the PI3K p110 catalytic subunit. Our data indicated that the v-Crk-induced activation of PI3K/AKT pathway was cooperatively achieved by two distinct interactions. One is the interaction of p85 with tyrosine-phosphorylated FAK promoted by the v-Crk SH2 domain, and another is the interaction of p110 with H-Ras dictated by the v-Crk SH3 domain.  相似文献   

16.
The overexpression of members of the ErbB tyrosine kinase receptor family has been associated with cancer progression. We demonstrate that focal adhesion kinase (FAK) is essential for oncogenic transformation and cell invasion that is induced by ErbB-2 and -3 receptor signaling. ErbB-2/3 overexpression in FAK-deficient cells fails to promote cell transformation and rescue chemotaxis deficiency. Restoration of FAK rescues both oncogenic transformation and invasion that is induced by ErbB-2/3 in vitro and in vivo. In contrast, the inhibition of FAK in FAK-proficient invasive cancer cells prevented cell invasion and metastasis formation. The activation of ErbB-2/3 regulates FAK phosphorylation at Tyr-397, -861, and -925. ErbB-induced oncogenic transformation correlates with the ability of FAK to restore ErbB-2/3-induced mitogen-activated protein kinase (MAPK) activation; the inhibition of MAPK prevented oncogenic transformation. In contrast, the inhibition of Src but not MAPK prevented ErbB-FAK-induced chemotaxis. In migratory cells, activated ErbB-2/3 receptors colocalize with activated FAK at cell protrusions. This colocalization requires intact FAK. In summary, distinct FAK signaling has an essential function in ErbB-induced oncogenesis and invasiveness.  相似文献   

17.
During glucose deprivation (GD)-induced cellular stress, the molecular chaperone glucose-regulated protein 75 (Grp75)/Mortalin/PBP74/mtHSP70 (hereafter termed “Grp75”) plays an important role in the suppression of apoptosis by inhibiting the Bax conformational change that delays the release of cytochrome c. The molecular pathways by which it carries out these functions are still unclear. We hypothesize that the anti-apoptotic effect by the overexpression of Grp75 was through the signal of AKT activated by classic phosphoinositide 3-kinase (PI3K) and also involved PI3K-independent pathways. Using the PC12 cell GD model, we demonstrated a novel mechanism of Grp75 activating AKT, which may be PI3K independent and associated with Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK signaling. The PI3K inhibitor LY294002 did not influence the activation of AKT by the Grp75 overexpression under GD; however, the MEK inhibitor U0126 dramatically inhibited AKT phosphorylation in the same assay. In addition to the PI3K/AKT signal pathway, Grp75 overexpression also inhibited the Bax conformational change through the Raf/MEK/ERK signal pathway. In conclusion, Grp75 overexpression in activating AKT can be PI3K independent and associated with Raf/MEK/ERK signaling under GD. At the same time, PI3K may also crosstalk with Raf-1, in which the prosurvival signal of PI3K maintains the expression of Raf-1. The activated AKT and extracellular signal-regulated protein kinases 1 and 2 by Grp75 inhibited the Bax conformational change and subsequent apoptosis.  相似文献   

18.
19.
Invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for successful crossing of the blood-brain barrier by Escherichia coli K1. We have previously demonstrated the requirement of cytoskeletal rearrangements and activation of focal adhesion kinase (FAK) in E. coli K1 invasion of human BMEC (HBMEC). The current study investigated the role of phosphatidylinositol 3-kinase (PI3K) activation and PI3K interaction with FAK in E. coli invasion of HBMEC. PI3K inhibitor LY294002 blocked E. coli K1 invasion of HBMEC in a dose-dependent manner, whereas an inactive analogue LY303511 had no such effect. In HBMEC, E. coli K1 increased phosphorylation of Akt, a downstream effector of PI3K, which was completely blocked by LY294002. In contrast, non-invasive E. coli failed to activate PI3K. Overexpression of PI3K mutants Deltap85 and catalytically inactive p110 in HBMEC significantly inhibited both PI3K/Akt activation and E. coli K1 invasion of HBMEC. Stimulation of HBMEC with E. coli K1 increased PI3K association with FAK. Furthermore, PI3K/Akt activation was blocked in HBMEC-overexpressing FAK dominant-negative mutants (FRNK and Phe397FAK). These results demonstrated the involvement of PI3K signaling in E. coli K1 invasion of HBMEC and identified a novel role for PI3K interaction with FAK in the pathogenesis of E. coli meningitis.  相似文献   

20.
v-Src-induced increases in diglyceride are derived from phosphatidylcholine via a type D phospholipase (PLD) and a phosphatidic acid phosphatase. v-Src-induced PLD activity, as measured by PLD-catalyzed transphosphatidylation of phosphatidylcholine to phosphatidylethanol, is inhibited by GDP beta S, which inhibits G-protein-mediated intracellular signals. Similarly, v-Src-induced increases in diglyceride are also blocked by GDP beta S. In contrast to the PLD activity induced by v-Src, PLD activity induced by the protein kinase C agonist, 12-O-tetradecanoylphorbol-13-acetate (TPA), was insensitive to GDP beta S. Consistent with the involvement of a G protein in the activation of PLD activity by v-Src, GTP gamma S, a nonhydrolyzable analog of GTP that potentiates G-protein-mediated signals, strongly enhanced PLD activity in v-Src-transformed cells relative to that in parental BALB/c 3T3 cells. The effect of GTP gamma S on PLD activity in v-Src-transformed cells was observed only when cells were prelabeled with [3H]myristate, which is incorporated exclusively into phosphatidylcholine, the substrate for the v-Src-induced PLD. There was no difference in the effect of GTP gamma S-induced PLD activity on v-Src-transformed and BALB/c 3T3 cells when the cells were prelabeled with [3H]arachidonate, which is not incorporated into phospholipids that are substrates for the v-Src-induced PLD. Similarly, GDP beta S inhibited PLD activity in v-Src-transformed cells much more strongly than in BALB/c 3T3 cells when [3H]myristate was used to prelabel the cells. The GTP-dependent activation of PLD by v-Src was dependent upon the presence of ATP but was unaffected by either cholera or pertussis toxin. These data suggest that v-Src induces PLD activity through a phosphorylation event and is mediated by a cholera and pertussis toxin-insensitive G protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号