首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-1H-quinolin-4-ones have been identified with high binding affinities for 5-HT6 receptor. In particular, 2-methyl-5-(N-methyl-piperazin-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dihydro-1H-quinolin-4-one (8g) exhibits high binding affinity toward 5-HT6 (IC50 = 8 nM) receptor with good selectivity over other serotonin and dopamine receptors.  相似文献   

2.
The synthesis and potential 5-hydroxytryptamine6 receptor (5-HT6R) antagonist activity of a novel series of N-arylsulfonyl-3-(2-N,N-dimethylaminoethylthio) indoles has been reported. The molecular modeling, synthesis and in-vitro radioligand binding data of this series are discussed. The present article describes 37 derivatives of the title series. It was observed that the increased side-chain length with the insertion of a sulfur atom did not lead to the loss of binding affinity of these compounds, although the affinities were reduced. The compounds exhibited moderate affinity and selectivity to human 5-HT6 receptors.  相似文献   

3.
N1-Arylsulfonyl-3-piperazinyl indole derivatives were designed and identified as a novel class of 5-HT6 receptors ligands. All the compounds have high affinity and antagonist activity towards 5-HT6 receptor. The compound 7a (Ki = 3.4 nM, functional assay IC50 = 310 nM) shows enhanced cognitive effect when tested in NORT and Morris water maze models. Synthesis, SAR and PK profile of these novel compounds constitute the subject matter of this Letter.  相似文献   

4.
4-(Piperazin-1-yl methyl)-N1-arylsulfonyl indole derivatives were designed and synthesized as 5-HT6 receptor (5-HT6R) ligands. The lead compound 6a, from this series shows potent in vitro binding affinity, good PK profile, no CYP liabilities and activity in animal models of cognition.  相似文献   

5.
N′-Cyanoisonicotinamidine derivatives, linked to an arylpiperazine moiety, were prepared to identify highly selective and potent 5-HT1A ligands as potential pharmacological tools in studies of wide spread psychiatric disorders. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine) known to be critical in order to have affinity on 5-HT1A receptor and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed affinity in nanomolar and subnanomolar range at 5-HT1A and moderate to no affinity for other relevant receptors (5-HT2A, 5-HT2C, D1, D2, α1 and α2). N′-Cyano-N-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)isonicotinamidine (4o) with Ki = 0.038 nM, was the most active and selective derivative for the 5-HT1A receptor with respect to other serotoninergic, dopaminergic and adrenergic receptors.  相似文献   

6.
The study is focused on (2-alkoxy)phenylpiperazine derivatives of 1-(2-hydroxy-3-(4-arylpiperazin-1-yl)propyl)-5,5-diphenylimidazolidine-2,4-dione with alkyl or ester substituents at N3 of hydantoin ring, as well as a new designed and synthesized series of compounds with a free N3H group or N3-acetic acid terminal fragment. The compounds were assessed on their affinity for 5-HT1A and ??1-adrenoceptors and evaluated in functional bioassays for antagonistic properties. Classical molecular mechanics (MMFFs force field, MCMM, MacroModel) and DFT methods (B3LYP functional, Gaussian 0.3) were used to investigate 3D structure of the compounds. SAR analysis was based on two pharmacophore models, the one described by Barbaro et al. for ??1-adenoceptor antagonist and the model of Lepailleur et al. for 5-HT1A receptor ligands. All compounds exhibited significant to moderate affinities for 5-HT1A receptors in nanomolar range (7-610 nM). The highest activity (7 nM) and selectivity (17.38) for 5-HT1A was observed for 1-(3-(4-(2-ethoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (13a). Among new synthesized compounds 1-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-5,5-diphenylimidazolidine-2,4-dione hydrochloride (20a) displayed the highest affinity (16.6 nM) and selectivity (5.72) for ??1-AR.  相似文献   

7.
Several series of conformationally constrained N1-arylsulfonyltryptamine derivatives were prepared and tested for 5-HT6 receptor binding affinity and ability to modulate cAMP production in a cyclase assay. The 3-piperidin-3-yl-, 3-(1-methylpyrrolidin-2-ylmethyl)-, and 3-pyrrolidin-3-yl-1H-indole arrays (8-13) appear to be able to adopt a conformation that allows high affinity 5-HT6 receptor binding, while the beta-carboline array 14 binds with a significantly weaker (10- to 100-fold) affinity. N1-Benzenesulfonyl-3-piperidin-3-yl-1H-indole 9a is a high affinity full agonist with EC50 = 24 nM. Several of the N1-arylsulfonyl-3-(1-methylpyrrolidin-2-ylmethyl)-1H-indole derivatives behave as very potent antagonists ((S)-11r, (S)-11t; IC50 = 0.8, 1.0 nM).  相似文献   

8.
In the pharmacotherapy of schizophrenia, there is a lack of effective drugs, and currently used agents cause a large number of side effects. The D2, 5-HT1A, 5-HT2A receptors are among the most important receptor targets in the treatment of schizophrenia, but antagonism at 5-HT6 and 5-HT7 receptors may bring about additional improvement of cognitive functions. However, doubt exists regarding the importance of 5-HT7R in the pharmacotherapy. In 2010, lurasidone (with high affinity for D2, D3, 5-HT1A, 5-HT2A, 5-HT7 receptors) was approved for the treatment of schizophrenia. Due to the efficacy of the mentioned drug and doubts related to the role of 5-HT7R, we decided to obtain compounds with an activity profile similar to that of lurasidone, but with the reduced affinity for 5-HT7R and increased affinity for 5-HT6R. For this purpose, we chose a flexible hexyl derivative of lurasidone (2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)hexahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 1a) as a hit structure. After molecular modeling, we modified it, in the area of the arylpiperazine and imide group, using the moieties found in other known CNS drugs. We received the compounds in accordance with the previously developed method of ecological synthesis in the microwave radiation field. Among the obtained compounds, N-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)naphthalene-sulfonamides 1v and 1w were distinguished as multifunctional ligands showing increased affinity for 5-HT6R, and 2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one 1i – a multifunctional ligand showing moderate affinity for 5-HT6R and threefold lower for 5-HT7R. In the paper, we discuss some of the observed dependencies regarding 5-HT6/5-HT7R affinity using molecular docking methods.  相似文献   

9.
A novel series of 5-HT2A ligands that contain a (phenylpiperazinyl-propyl)arylsulfonamides skeleton was synthesized. Thirty-seven N-(cycloalkylmethyl)-4-methoxy-N-(3-(4-arylpiperazin-1-yl)propyl)-arylsulfonamide and N-(4-(4-arylpiperazin-1-yl)butan-2-yl)-arylsulfonamide compounds were obtained. The binding of these compounds to the 5-HT2A, 5-HT2C, and 5-HT7 receptors was evaluated. Most of the compounds showed IC50 values of less than 100 nM and exhibited high selectivity for the 5-HT2A receptor. Among the synthesized compounds, 16a and 16d showed good affinity at 5-HT2A (IC50 = 0.7 nM and 0.5 nM) and good selectivity over 5-HT2C (50–100 times) and 5-HT7 (1500–3000 times).  相似文献   

10.
Further studies in quest of 5-HT6 serotonin receptor ligands led to the design and synthesis of a few selected examples of N-(inden-5-yl)sulfonamides with a ring-constrained aminoethyl side chain at the indene 3-position, some of which exhibited a high binding affinity, such as the pyrrolidine analogue 28 (Ki = 3 nM). Moreover, the structurally abbreviated N-(inden-5-yl)sulfonamides showed Ki values ?43 nM, which indicates that neither the N,N-aminoethyl nor the conformationally restricted aminoethyl side arm at the indene 3-position are required for binding. Selected compounds were then tested in a functional cAMP stimulation assay and found to act as 5-HT6 antagonists, although with moderate potency at the micromolar level.  相似文献   

11.
We describe the first validated scintillation proximity assay (SPA) binding method for quantitation of 3H-labeled d-lysergic acid diethylamide (LSD) binding to recombinant human 5-hydroxytryptamine 6 (5-HT6) receptors expressed in Chinese hamster ovary (CHO)-Dukx and HeLa cells. The assay was developed using intact cells as a receptor source because membrane fractions derived from these cells failed to discern specific binding from a high level of nonspecific binding. The pharmacological binding profile of seven 5-HT6 agonists and antagonists using intact CHO-Dukx/5-HT6 cells in the SPA format was similar to data obtained from a filtration binding assay using HeLa/5-HT6 membranes. Ki values and rank order of potencies obtained in the SPA format were consistent with published filtration data as follows: SB-271046 (Ki = 1.9 nM) > methiothepin (Ki = 6.2 nM) > mianserin (Ki = 74.3 nM) > 5-methoxytryptamine (5-MeOT, Ki = 111 nM) > 5-HT (Ki = 150 nM) > ritanserin (Ki = 207 nM) > 5-carboxamidotryptamine (5-CT, Ki = 704 nM). Additional evaluation with four antipsychotics demonstrated strong agreement with previous literature reports. A high specific binding signal and low assay variability, as determined by Z′ = 0.81 ± 0.017, make the SPA format amenable to automation and higher throughput; hence, this assay can be a viable alternative to the more labor-intensive filtration and centrifugation methods.  相似文献   

12.
The importance of thiols has stimulated the development of a number of methods for determining glutathione and other biologically significant thiols. Methods that are currently available, however have some limitations, such as being time consuming and complex. In the present study, a new high-performance liquid chromatography (HPLC) method for determining biological thiols was developed by using 9-Acetoxy-2-(4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)phenyl)-3-oxo-3H-naphtho[2,1-b]pyran (ThioGlo™3) as a derivatizing agent. ThioGlo™ reacts selectively and rapidly with the thiols to yield fluorescent adducts which can be detected fluorimetrically (λex=365 nm, λem=445 nm). The within-run coefficient of variation for glutathione (GSH) by this method ranges from 1.08 to 2.94% whereas the between-run coefficient of variation for GSH is 4.31–8.61%. For GSH, the detection limit is around 50 fmol and the GSH derivatives remain stable for 1 month, if kept at 4°C. Results for GSSG and cysteine are also included. The ThioGlo™ method is compared to our previous method in which N-(1-pyrenyl)maleimide (NPM) is used to derivatize thiol-containing compounds. The present method offers various advantages over the currently accepted techniques, including speed and sensitivity.  相似文献   

13.
A series of N-fluoroalkyl-8-(6-methoxy-2-methylpyridin-3-yl)-2,7-dimethyl-N-alkylpyrazolo[1,5-a][1,3,5]triazin-4-amines were prepared and evaluated as potential CRF1R PET imaging agents. Optimization of their CRF1R binding potencies and octanol-phosphate buffer phase distribution coefficients resulted in discovery of analog 7e (IC50 = 6.5 nM, log D = 3.5).  相似文献   

14.
Nitroxide radicals are widely used as molecular probes in different fields of chemistry and biology. In this work, we describe pH-sensitive imidazoline- and imidazolidine-based nitroxides with pK values in the range 4.7-7.6 (2,2,3,4,5,5-hexamethylperhydroimidazol-1-oxyl, 4-amino-2,2,5,5-tetramethyl-2,5-dihydro-1H-imidazol-1-oxyl, 4-dimethylamino-2,2-diethyl-5,5-dimethyl-2,5-dihydro-1H-imidazol-1-oxyl, and 2,2-diethyl-5,5-dimethyl-4-pyrrolidyline-1-yl-2,5-dihydro-1H-imidazol-1-oxyl), which allow the pH-monitoring inside chloroplasts. We have demonstrated that EPR spectra of these spin-probes localized in the thylakoid lumen markedly change with the light-induced acidification of the thylakoid lumen in chloroplasts. Comparing EPR spectrum parameters of intrathylakoid spin-probes with relevant calibrating curves, we could estimate steady-state values of lumen pHin established during illumination of chloroplasts with continuous light. For isolated bean (Vicia faba) chloroplasts suspended in a medium with pHout = 7.8, we found that pHin ≈ 5.4-5.7 in the state of photosynthetic control, and pHin ≈ 5.7-6.0 under photophosphorylation conditions. Thus, ATP synthesis occurs at a moderate acidification of the thylakoid lumen, corresponding to transthylakoid pH difference ΔpH ≈ 1.8-2.1. These values of ΔpH are consistent with a point of view that under steady-state conditions the proton gradient ΔpH is the main contributor to the proton motive force driving the operation of ATP synthesis, provided that stoichiometric ratio H+/ATP is n ≥ 4-4.7.  相似文献   

15.
Aminopyrimidine 2 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-cyclopropylpyrimidin-2-amine) emerged from a high throughput screen as a novel 5-HT1A agonist. This compound showed moderate potency for 5-HT1A in binding and functional assays, as well as moderate metabolic stability. Implementation of a strategy for improving metabolic stability by lowering the lipophilicity (c Log D) led to identification of methyl ether 31 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-(2-methoxyethyl)pyrimidin-2-amine) as a substantially improved compound within the series.  相似文献   

16.
A series of new xanthone derivatives with piperazine moiety [17] was synthesized and evaluated for their pharmacological properties. They were subject to binding assays for α1 and β1 adrenergic as well as 5-HT1A, 5-HT6 and 5-HT7b serotoninergic receptors. Five of the tested compounds were also evaluated for their anticonvulsant properties. The compound 3a 3-methoxy-5-{[4-(2-methoxyphenyl)piperazin-1-yl]methyl}-9H-xanthen-9-one hydrochloride exhibited significantly higher affinity for serotoninergic 5-HT1A receptors (Ki = 24 nM) than other substances. In terms of anticonvulsant activity, 6-methoxy-2-{[4-(benzyl)piperazin-1-yl]methyl}-9H-xanthen-9-one (5) proved best properties. Its ED50 determined in maximal electroshock (MES) seizure assay was 105 mg/kg b.w. (rats, p.o.). Combining of xanthone with piperazine moiety resulted in obtaining of compounds with increased bioavailability after oral administration.  相似文献   

17.
Synthesis, radioligand binding and molecular modeling studies of several 9-aminomethyl-9,10-dihydroanthracene (AMDA) analogs were carried out to determine the extent of the steric tolerance associated with expansion of the tricyclic ring system and amine substitution at 5-HT2A and H1 receptors. A mixture of (7,12-dihydrotetraphene-12-yl)methanamine and (6,11-dihydrotetracene-11-yl)methanamine in a 75–25% ratio was found to have an apparent Ki of 10 nM at the 5-HT2A receptor. A substantial binding affinity for (7,12-dihydrotetraphene-3-methoxy-12-yl)methanamine at the 5-HT2A receptor (Ki = 21 nM) was also observed. Interestingly, this compound was found to have 100-fold selectivity for 5-HT2A over the H1 receptor (Ki = 2500 nM). N-Phenylalkyl-AMDA derivatives, in which the length of the alkyl chain varied from methylene to n-butylene, were found to have only weak affinity for both 5-HT2A and H1 receptors (Ki = 223 to 964 nM). Our results show that large rigid annulated AMDA analogs can be sterically accommodated within the proposed 5-HT2A binding site.  相似文献   

18.
A series of novel substituted (Z)-5-((1-benzyl-1H-indol-3-yl)methylene)imidazolidin-2,4-diones (3a-f) and (Z)-5-((1-benzyl-1H-indol-3-yl)methylene)-2-iminothiazolidin-4-ones (3g-o) have been synthesized utilizing microwave irradiation. These analogs were evaluated for in vitro cytotoxicity against a panel of 60 human tumor cell lines. Compound 3i exhibits potent growth inhibition against melanoma UACC-257 (GI50 = 13.3 nM) and OVCAR-8 ovarian (GI50 = 19.5 nM) cancer cells while possessing significant cytotoxicity (LC50 = 308 nM and LC50 = 851 nM, respectively) against the same cell lines within this series of compounds. A second analog, 3a, had GI50 values of 307 and 557 nM against SK-MEL-2 melanoma and A498 renal cancer cell lines, and exhibited GI50 values ranging from 0.30 to 6 μM against 98% of all cancer cell lines in the 60-cell panel. Thus, (Z)-5-((5-chloro-1-(4-fluorobenzyl)-1H-indol-3-yl)methylene)-2-iminothiazolidin-4-one (3i) and (Z)-methyl 1-(4-cyanobenzyl)-3-((2,5-dioxoimidazolidin-4-ylidene)methyl)-1H-indole-6-carboxylate (3a) can be regarded as useful lead compounds for further structural optimization as antitumor agents.  相似文献   

19.
A novel series of 1H-indole-3-carboxylic acid pyridine-3-ylamides were synthesized and identified to show high affinity and selectivity for 5-HT2C receptor. Among them, 1H-indole-3-carboxylic acid[6-(2-chloro-pyridin-3-yloxy)-pyridin-3-yl]-amide (15k) exhibits the highest affinity (IC50 = 0.5 nM) with an excellent selectivity (>2000 times) over other serotonin (5-HT1A, 5-HT2A, and 5-HT6) and dopamine (D2–D4) receptors.  相似文献   

20.
In order to make a progress in discovering a new agents for chemotherapy with improved properties and bearing in mind the fact that substituted 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, series of novel 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones were synthesized and characterized by spectral (UV–Vis, IR, NMR, ESI-MS), X-ray and elemental analysis. All compounds were examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Four compounds, 3-hydroxy-1-(p-tolyl)-4-(2-thienylcarbonyl)-5-(4-chlorophenyl)-2,5-dihydro-1H-pyrrol-2-one (D10), 3-hydroxy-1-(3-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D13), 3-hydroxy-1-(4-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D14), and 3-hydroxy-1-(4-chlorophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D15), that showed the highest cytotoxicity against malignant cells and the best selectivity towards normal cells were selected for further experiments. Results obtained by investigating mechanisms of cytotoxic activity suggest that selected 3-hydroxy-3-pyrrolin-2-one derivatives in HeLa cells induce apoptosis that is associated with S phase arrest (D13, D15, and D10) or unrelated to cell cycle distribution (D14). Additionally, to better understand their suitability for potential use as anticancer medicaments we studied the interactions between biomacromolecules (DNA or BSA) and D13 and D15. The results indicated that D13 and D15 have great affinity to displace EB from the EB-DNA complex through intercalation [Ksv = (3.7 ± 0.1) and (3.4 ± 0.1) × 103 M−1, respectively], an intercalative mode also confirmed through viscosity measurements. Ka values, obtained as result of fluorescence titration of BSA with D13 and D15 [Ka = (4.2 ± 0.2) and (2.6 ± 0.2) × 105 M, respectively], support the fact that a significant amount of the tested compounds could be transported and distributed through the cells. In addition, by DNA and BSA molecular docking study for D13, D14 and D15 is determined and predicted the binding mode and the interaction region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号