首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study tested the hypothesis that cyclic ADP ribose (cADPR) serves as a novel second messenger to mediate intracellular Ca2+ mobilization in coronary arterial endothelial cells (CAECs) and thereby contributes to endothelium-dependent vasodilation. In isolated and perfused small bovine coronary arteries, bradykinin (BK)-induced concentration-dependent vasodilation was significantly attenuated by 8-bromo-cADPR (a cell-permeable cADPR antagonist), ryanodine (an antagonist of ryanodine receptors), or nicotinamide (an ADP-ribosyl cyclase inhibitor). By in situ simultaneously fluorescent monitoring, Ca2+ transient and nitric oxide (NO) levels in the intact coronary arterial endothelium preparation, 8-bromo-cADPR (30 microM), ryanodine (50 microM), and nicotinamide (6 mM) substantially attenuated BK (1 microM)-induced increase in intracellular [Ca2+] by 78%, 80%, and 74%, respectively, whereas these compounds significantly blocked BK-induced NO increase by about 80%, and inositol 1,4,5-trisphosphate receptor blockade with 2-aminethoxydiphenyl borate (50 microM) only blunted BK-induced Ca2+-NO signaling by about 30%. With the use of cADPR-cycling assay, it was found that inhibition of ADP-ribosyl cyclase by nicotinamide substantially blocked BK-induced intracellular cADPR production. Furthermore, HPLC analysis showed that the conversion rate of beta-nicotinamide guanine dinucleotide into cyclic GDP ribose dramatically increased by stimulation with BK, which was blockable by nicotinamide. However, U-73122, a phospholipase C inhibitor, had no effect on this BK-induced increase in ADP-ribosyl cyclase activity for cADPR production. In conclusion, these results suggest that cADPR importantly contributes to BK- and A-23187-induced NO production and vasodilator response in coronary arteries through its Ca2+ signaling mechanism in CAECs.  相似文献   

2.
E N Chini 《Journal of applied physiology》2001,91(1):516-21; discussion 504-5
Volatile anesthetics have multiple actions on intracellular Ca(2+) homeostasis, including activation of the ryanodine channel (RyR) and sensitization of this channel to agonists such as caffeine and ryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in many mammalian cells, and cADPR has been proposed to be a second messenger in many signaling pathways. I investigated the effect of volatile anesthetics on the cADPR signaling system, using sea urchin egg homogenates as a model of intracellular Ca(2+) stores. Ca(2+) uptake and release were monitored in sea urchin egg homogenates by using the fluo-3 fluorescence technique. Activity of the ADP-ribosyl cyclase was monitored by using a fluorometric method using nicotinamide guanine dinucleotide as a substrate. Halothane in concentrations up to 800 microM did not induce Ca(2+) release by itself in sea urchin egg homogenates. However, halothane potentiates the Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine. Furthermore, other volatile anesthetics such as isoflurane and sevoflurane had no effect. Halothane also potentiated the activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased about three times by addition of 800 microM halothane. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to halothane. In contrast, all the volatile anesthetics used had no effect on the activity of the enzyme that synthesizes cADPR. I propose that the complex effect of volatile anesthetics on intracellular Ca(2+) homeostasis may involve modulation of the cADPR signaling system.  相似文献   

3.
beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.  相似文献   

4.
Cyclic ADP-ribose (cADPR), a known endogenous modulator of ryanodine receptor Ca2+ releasing channels, is found in the nervous system. Injection of cADPR into neuronal cells primarily induces a transient elevation of intracellular Ca2+ concentration ([Ca2+]i), and/or secondarily potentiates [Ca2+]i increases that are the result of depolarization-induced Ca2+ influx. Acetylcholine release from cholinergic neurons is facilitated by cADPR. cADPR modifies K+ currents or elicits Ca2+-dependent inward currents. cADPR is synthesized by both membrane-bound and cytosolic forms of ADP-ribosyl cyclase in neuronal cells. cADPR hydrolase activity is weak in the membrane fraction, but high in the cytoplasm. Cytosolic ADP-ribosyl cyclase activity is upregulated by nitric oxide/cyclic GMP-dependent phosphorylation. Stimulation of muscarinic and beta-adrenergic receptors activates membrane-bound ADP-ribosyl cyclase via G proteins within membranes of neuronal tumor cells and cortical astrocytes. These findings strongly suggest that cADPR is a second messenger in Ca2+ signaling in the nervous system, although many intriguing issues remain to be addressed before this identity is confirmed.  相似文献   

5.
The present study was designed to test the hypothesis that cADP-ribose (cADPR) increases Ca(2+) release through activation of ryanodine receptors (RYR) on the sarcoplasmic reticulum (SR) in coronary arterial smooth muscle cells (CASMCs). We reconstituted RYR from the SR of CASMCs into planar lipid bilayers and examined the effect of cADPR on the activity of these Ca(2+) release channels. In a symmetrical cesium methanesulfonate configuration, a 245 pS Cs(+) current was recorded. This current was characterized by the formation of a subconductance and increase in the open probability (NP(o)) of the channels in the presence of ryanodine (0.01-1 microM) and imperatoxin A (100 nM). A high concentration of ryanodine (50 microM) and ruthenium red (40-80 microM) substantially inhibited the activity of RYR/Ca(2+) release channels. Caffeine (0.5-5 mM) markedly increased the NP(o) of these Ca(2+) release channels of the SR, but D-myo-inositol 1,4,5-trisphospate and heparin were without effect. Cyclic ADPR significantly increased the NP(o) of these Ca(2+) release channels of SR in a concentration-dependent manner. Addition of cADPR (0.01 microM) into the cis bath solution produced a 2.9-fold increase in the NP(o) of these RYR/Ca(2+) release channels. An eightfold increase in the NP(o) of the RYR/Ca(2+) release channels (0.0056 +/- 0.001 vs. 0.048 +/- 0.017) was observed at a concentration of cADPR of 1 microM. The effect of cADPR was completely abolished by ryanodine (50 microM). In the presence of cADPR, Ca(2+)-induced activation of these channels was markedly enhanced. These results provide evidence that cADPR activates RYR/Ca(2+) release channels on the SR of CASMCs. It is concluded that cADPR stimulates Ca(2+) release through the activation of RYRs on the SR of these smooth mucle cells.  相似文献   

6.
The present study was designed to determine whether the cADP-ribose-mediated Ca(2+) signaling is involved in the inhibitory effect of nitric oxide (NO) on intracellular Ca(2+) mobilization. With the use of fluorescent microscopic spectrometry, cADP-ribose-induced Ca(2+) release from sarcoplasmic reticulum (SR) of bovine coronary arterial smooth muscle cells (CASMCs) was determined. In the alpha-toxin-permeabilized primary cultures of CASMCs, cADP-ribose (5 microM) produced a rapid Ca(2+) release, which was completely blocked by pretreatment of cells with the cADP-ribose antagonist 8-bromo-cADP-ribose (8-Br-cADPR). In intact fura 2-loaded CASMCs, 80 mM KCl was added to depolarize the cells and increase intracellular Ca(2+) concentration ([Ca(2+)](i)). Sodium nitroprusside (SNP), an NO donor, produced a concentration-dependent inhibition of the KCl-induced increase in [Ca(2+)](i), but it had no effect on the U-46619-induced increase in [Ca(2+)](i). In the presence of 8-Br-cADPR (100 microM) and ryanodine (10 microM), the inhibitory effect of SNP was markedly attenuated. HPLC analyses showed that CASMCs expressed the ADP-ribosyl cyclase activity, and SNP (1-100 microM) significantly reduced the ADP-ribosyl cyclase activity in a concentration-dependent manner. The effect of SNP was completely blocked by addition of 10 microM oxygenated hemoglobin. We conclude that ADP-ribosyl cyclase is present in CASMCs, and NO may decrease [Ca(2+)](i) by inhibition of cADP-ribose-induced Ca(2+) mobilization.  相似文献   

7.
The effects of calmodulin (CaM) and CaM antagonists on microsomal Ca(2+) release through a ryanodine-sensitive mechanism were investigated in rat pancreatic acinar cells. When caffeine (10 mM) was added after a steady state of ATP-dependent (45)Ca(2+) uptake into the microsomal vesicles, the caffeine-induced (45)Ca(2+) release was significantly increased by pretreatment with ryanodine (10 microM). The presence of W-7 (60 microM), a potent inhibitor of CaM, strongly inhibited the release, while W-5 (60 microM), an inactive CaM antagonist, showed no inhibition. Inhibition of the release by W-7 was observed at all caffeine concentrations (5-30 mM) tested. The presence of exogenously added CaM (10 microg/ml) markedly increased the caffeine (5-10 mM)-induced (45)Ca(2+) release and shifted the dose-response curve of caffeine-induced (45)Ca(2+) release to the left. Cyclic ADP-ribose (cADPR, 2 microM)-induced (45)Ca(2+) release was enhanced by the presence of ryanodine (10 microM). cADPR (2 microM)- or ryanodine (500 microM)-induced (45)Ca(2+) release was also inhibited by W-7 (60 microM), but not by W-5 (60 microM), and was stimulated by CaM (10 microg/ml). These results suggest that the ryanodine-sensitive Ca(2+) release mechanism of rat pancreatic acinar cells is modulated by CaM.  相似文献   

8.
ADP-ribosyl cyclase/CD38 is a bifunctional enzyme that catalyzes at its ectocellular domain the synthesis from NAD(+) (cyclase) and the hydrolysis (hydrolase) of the calcium-mobilizing second messenger cyclic ADP ribose (cADPR). Furthermore, CD38 mediates cADPR influx inside a number of cells, thereby inducing Ca(2+) mobilization. Intracellularly, cADPR releases Ca(2+) from ryanodine-sensitive pools, thus activating several Ca(2+)-dependent functions. Among these, the inhibition of osteoclastic-mediated bone resorption has been demonstrated. We found that HOBIT human osteoblastic cells display ADP-ribosyl cyclase activity and we examined the effects of CD38 stimulation on osteoblasts function. Extracellular NAD(+) induced elevation of cytosolic calcium due to both Ca(2+) influx from the extracellular medium and Ca(2+) release from ryanodine-sensitive intracellular stores. Culturing these cells in the presence of NAD(+) caused a complete growth arrest with a time-dependent decrease of cell number and the appearance of apoptotic nuclei. The first changes could be observed after 24 h of treatment and became fully evident after 72-96 h. We propose a role of extracellular NAD(+) in bone homeostatic control.  相似文献   

9.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.  相似文献   

10.
Recent studies have provided evidence for a role of cyclic ADP-ribose (cADPR) in the regulation of intracellular calcium in smooth muscles of the intestine, blood vessels and airways. We investigated the presence and subcellular localization of ADP-ribosyl cyclase, the enzyme that catalyzes the conversion of beta-NAD(+) to cADPR, and cADPR hydrolase, the enzyme that degrades cADPR to ADPR, in tracheal smooth muscle (TSM). Sucrose density fractionation of TSM crude membranes provided evidence that ADP-ribosyl cyclase and cADPR hydrolase activities were associated with a fraction enriched in 5'-nucleotidase activity, a plasma membrane marker enzyme, but not in a fraction enriched in either sarcoplasmic endoplasmic reticulum calcium ATPase or ryanodine receptor channels, both sarcoplasmic reticulum markers. The ADP-ribosyl cyclase and cADPR hydrolase activities comigrated at a molecular weight of approximately 40 kDa on SDS-PAGE. This comigration was confirmed by gel filtration chromatography. Investigation of kinetics yielded K(m) values of 30.4+/-1.5 and 695. 3+/-171.2 microM and V(max) values of 330.4+/-90 and 102.8+/-17.1 nmol/mg/h for ADP-ribosyl cyclase and cADPR hydrolase, respectively. These results suggest a possible role for cADPR as an endogenous modulator of [Ca(2+)](i) in porcine TSM cells.  相似文献   

11.
Muscarinic acetylcholine receptors in NG108-15 neuroblastoma x glioma cells, and beta-adrenergic or angiotensin II receptors in cortical astrocytes and/or ventricular myocytes, utilize the direct signaling pathway to ADP-ribosyl cyclase within cell membranes to produce cyclic ADP-ribose (cADPR) from beta-NAD+. This signal cascade is analogous to the previously established transduction pathways from bradykinin receptors to phospholipase Cbeta and beta-adrenoceptors to adenylyl cyclase via G proteins. Upon receptor stimulation, the newly-formed cADPR may coordinately function to upregulate the release of Ca2+ from the type II ryanodine receptors as well as to facilitate Ca2+ influx through voltage-dependent Ca2+ channels. cADPR interacts with FK506, an immunosuppressant, at FKBP12.6, FK506-binding-protein, and calcineurin, or ryanodine receptors. cADPR also functions through activating calcineurin released from A-kinase anchoring protein (AKAP79). Thus, some G(q/11)-coupled receptors can control cADPR-dependent modulation in Ca2+ signaling.  相似文献   

12.
While the molecular mechanisms by which oxidants cause cytotoxicity are still poorly understood, disruption of Ca(2+) homeostasis appears to be one of the critical alterations during the oxidant-induced cytotoxic process. Here, we examined the possibility that oxidative stress may alter the metabolism of cyclic ADP-ribose (cADPR), a potent Ca(2+)-mobilizing second messenger in the heart. Isolated heart perfused by Langendorff technique was subjected to ischemia/reperfusion injury and endogenous cADPR level was determined using a specific radioimmunoassay. Following ischemia/reperfusion injury, a significant increase in intracellular cADPR level was observed. The elevation of cADPR content was closely correlated with the increase in ADP-ribosyl cyclase activity. Inclusion of oxygen free radical scavengers, 2,2,6,6-tetramethyl-1-piperidinyloxy and mannitol, in the reperfusate prevented the ischemia/reperfusion-induced increases in cADPR level and the ADP-ribosyl cyclase activity. Exposure of isolated cardiomyocytes to t-butyl hydroperoxide increased the ADP-ribosyl cyclase activity, cADPR level, and intracellular Ca(2+) concentration ([Ca(2+)](i)) and consequently resulting in cell lethal damage. The oxidant-induced elevation of [Ca(2+)](i) as well as cell lethal damage was blocked by a cADPR antagonist, 8-bromo-cADPR. These results provide evidence for involvement of cADPR and its producing enzyme in alteration of Ca(2+) homeostasis during the ischemia/reperfusion injury of the heart.  相似文献   

13.
Messutat S  Heine M  Wicher D 《Cell calcium》2001,30(3):199-211
The dynamics of intracellular free Ca(2+)([Ca(2+)](i)) changes were investigated in dorsal unpaired median (DUM) neurons of the cockroach Periplaneta americana. Activation of voltage-gated Ca(2+) channels caused a steep increase in [Ca(2+)](i). Depolarizations lasting for < 100ms led to Ca(2+) release from intracellular stores as is indicated by the finding that the rise of [Ca(2+)](i) was greatly reduced by the antagonists of ryanodine receptors, ryanodine and ruthenium red. There is a resting Ca(2+)current which is potentiated on application of a neuropeptide, Neurohormone D (NHD), a member of the adipokinetic hormone family. Ca(2+) influx enhanced in this way again caused a rise of [Ca(2+)](i) sensitive to ryanodine and ruthenium red. Such rises developed and relaxed much more slowly than the depolarization-induced signals. Ca(2+)responses similar to those induced by NHD were obtained with the ryanodine receptor agonists caffeine (20mM) and cADP-ribose (cADPR, 100nM). These Ca(2+) responses, however, varied considerably in size and kinetics, and part of the cells did not respond at all to caffeine or cADPR. Such cells, however, produced Ca(2+) rises after having been treated with NHD. Thus, the variability of Ca(2+) signals might be caused by different filling states of Ca(2+) stores, and the resting Ca(2+) current seems to represent a source to fill empty Ca(2+) stores. In line with this notion, block of the endoplasmic Ca(2+) pump by thapsigargin (1 microM) produced either no or largely varying Ca(2+) responses. The Ca(2+) signals induced by caffeine and cADPR displayed different sensitivity to ryanodine receptor blockers. cADPR failed to elicit any response when ryanodine or ruthenium red were present. By contrast, the response to caffeine, in the presence of ryanodine, was only reduced by about 50% and, in the presence of ruthenium red, it was not at all reduced. Thus, there may be different types of Ca(2+) release channels. Block of mitochondrial Ca(2+) uptake with carbonyl cyanide m -chlorophenylhydrazone (CCCP, 1 microM) completely abolished cADPR-induced Ca(2+) signals, but it did not affect the caffeine-induced signals. Taken together our findings seem to indicate that there are different stores using different Ca(2+) uptake pathways and that some of these pathways involve mitochondria.  相似文献   

14.
The ADP-ribosyl cyclase CD38 whose catalytic domain resides in outside of the cell surface produces the second messenger cyclic ADP-ribose (cADPR) from NAD(+). cADPR increases intracellular Ca(2+) through the intracellular ryanodine receptor/Ca(2+) release channel (RyR). It has been known that intracellular NAD(+) approaches ecto-CD38 via its export by connexin (Cx43) hemichannels, a component of gap junctions. However, it is unclear how cADPR extracellularly generated by ecto-CD38 approaches intracellular RyR although CD38 itself or nucleoside transporter has been proposed to import cADPR. Moreover, it has been unknown what physiological stimulation can trigger Cx43-mediated export of NAD(+). Here we demonstrate that Cx43 hemichannels, but not CD38, import cADPR to increase intracellular calcium through RyR. We also demonstrate that physiological stimulation such as Fcγ receptor (FcγR) ligation induces calcium mobilization through three sequential steps, Cx43-mediated NAD(+) export, CD38-mediated generation of cADPR and Cx43-mediated cADPR import in J774 cells. Protein kinase A (PKA) activation also induced calcium mobilization in the same way as FcγR stimulation. FcγR stimulation-induced calcium mobilization was blocked by PKA inhibition, indicating that PKA is a linker between FcγR stimulation and NAD(+)/cADPR transport. Cx43 knockdown blocked extracellular cADPR import and extracellular cADPR-induced calcium mobilization in J774 cells. Cx43 overexpression in Cx43-negative cells conferred extracellular cADPR-induced calcium mobilization by the mediation of cADPR import. Our data suggest that Cx43 has a dual function exporting NAD(+) and importing cADPR into the cell to activate intracellular calcium mobilization.  相似文献   

15.
The effects of cyclic ADP-ribose (cADPR) and the immunosuppressant drug FK506 on microsomal Ca2+ release through a ryanodine-sensitive mechanism were investigated in rat pancreatic acinar cells. After a steady state of 45Ca2+ uptake into the microsomal vesicles, ryanodine or caffeine was added. Preincubation of the vesicles with cADPR (0.5 microM) shifted the dose-response curve of ryanodine- or caffeine-induced 45Ca2+ release from the vesicles to the left. Preincubation with cADPR shifted the dose-response curve of the FK506-induced 45Ca2+ release upward. Preincubation with FK506 (3 microM) shifted the dose-response curve of the ryanodine- or caffeine-induced 45Ca2+ release to the left by the same extent as that in the case of cADPR. FK506 shifted the dose-response curve of the cADPR-induced 45Ca2+ release upward. The presence of both cADPR and FK506 enhanced the ryanodine (30 microM)- or caffeine (10 mM)-induced 45Ca2+ release by the same extent as that in the case of cADPR alone or FK506 alone. These results indicate that cADPR and FK506 modulate the ryanodine-sensitive Ca2+ release mechanism of rat pancreatic acinar cells by increasing the ryanodine or caffeine sensitivity to the mechanism. In addition, there is a possibility that the mechanisms of modulation by cADPR and FK506 are the same.  相似文献   

16.
The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38- cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 +/- 5.2 and 50.5 +/- 8.0 pmol/mg protein). P2Y receptor stimulation of CD38- cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave.  相似文献   

17.
We investigated the effect of glycolytic pathway intermediaries upon Ca(2+) release induced by cyclic ADP-ribose (cADPR), inositol 1',4', 5-trisphosphate (IP(3)), and nicotinate adenine dinucleotide phosphate (NAADP) in sea urchin egg homogenate. Fructose 1,6, -diphosphate (FDP), at concentrations up to 8 mM, did not induce Ca(2+) release by itself in sea urchin egg homogenate. However, FDP potentiates Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine, caffeine, and palmitoyl-CoA. Furthermore, glucose 6-phosphate had similar effects. FDP also potentiates activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased approximately 3.5 times by addition of 4 mM FDP. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to FDP. The Ca(2+) release mediated by FDP in the presence of subthreshold concentrations of cADPR was inhibited by antagonists of the ryanodine channel, such as ruthenium red, and by the cADPR inhibitor 8-Br-cADPR. However, inhibition of Ca(2+) release induced by IP(3) or NAADP had no effect upon Ca(2+) release induced by FDP in the presence of low concentrations of cADPR. Furthermore, FDP had inhibitory effects upon Ca(2+) release induced by both IP(3) and NAADP. We propose that the state of cellular intermediary metabolism may regulate cellular Ca(2+) homeostases by switching preferential effects from one intracellular Ca(2+) release channel to another.  相似文献   

18.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

19.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

20.
We showed that muscarinic acetylcholine (ACh)-stimulation increased the cellular content of cADPR in the pancreatic acinar cells from normal mice but not in those from CD38 knockout mice. By monitoring ACh-evoked increases in the cytosolic Ca(2+) concentration ([Ca(2+)](i)) using fura-2 microfluorimetry, we distinguished and characterized the Ca(2+) release mechanisms responsive to cADPR. The Ca(2+) response from the cells of the knockout mice (KO cells) lacked two components of the muscarinic Ca(2+) release present in wild mice. The first component inducible by the low concentration of ACh contributed to regenerative Ca(2+) spikes. This component was abolished by ryanodine treatment in the normal cells and was severely impaired in KO cells, indicating that the low ACh-induced regenerative spike responses were caused by cADPR-dependent Ca(2+) release from a pool regulated by a class of ryanodine receptors. The second component inducible by the high concentration of ACh was involved in the phasic Ca(2+) response, and it was not abolished by ryanodine treatment. Overall, we conclude that muscarinic Ca(2+) signaling in pancreatic acinar cells involves a CD38-dependent pathway responsible for two cADPR-dependent Ca(2+) release mechanisms in which the one sensitive to ryanodine plays a crucial role for the generation of repetitive Ca(2+) spikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号