首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rapid Evolution of Novel Traits in Microorganisms   总被引:1,自引:0,他引:1       下载免费PDF全文
The use of natural microorganisms in biotransformations is frequently constrained by their limited tolerance to the high concentrations of metabolites and solvents required for effective industrial production. In many cases, more robust strains have to be generated by random mutagenesis and selection. This process of directed evolution can be accelerated in mutator strains, which carry defects in one or more of their DNA repair genes. However, in order to use mutator strains, it is essential to restore the normal low mutation rate of the selected organisms immediately after selection to prevent the accumulation of undesirable spontaneous mutations. To enable this process, we constructed temperature-sensitive plasmids that temporarily increase the mutation frequency of their hosts by 20- to 4,000-fold. Under appropriate selection pressure, microorganisms transformed with mutator plasmids can be quickly evolved to exhibit new, complex traits. By using this approach, we were able to increase the tolerance of three bacterial strains to dimethylformamide by 10 to 20 g/liter during only two subsequent transfers. Subsequently, the evolved strains were returned to their normal low mutation rate by curing the cells of the mutator plasmids. Our results demonstrate a new and efficient method for rapid strain improvement based on in vivo mutagenesis.  相似文献   

2.
Nilsson AI  Kugelberg E  Berg OG  Andersson DI 《Genetics》2004,168(3):1119-1130
Experimental evolution is a powerful approach to study the dynamics and mechanisms of bacterial niche specialization. By serial passage in mice, we evolved 18 independent lineages of Salmonella typhimurium LT2 and examined the rate and extent of adaptation to a mainly reticuloendothelial host environment. Bacterial mutation rates and population sizes were varied by using wild-type and DNA repair-defective mutator (mutS) strains with normal and high mutation rates, respectively, and by varying the number of bacteria intraperitoneally injected into mice. After <200 generations of adaptation all lineages showed an increased fitness as measured by a faster growth rate in mice (selection coefficients 0.11-0.58). Using a generally applicable mathematical model we calculated the adaptive mutation rate for the wild-type bacterium to be >10(-6)/cell/generation, suggesting that the majority of adaptive mutations are not simple point mutations. For the mutator lineages, adaptation to mice was associated with a loss of fitness in secondary environments as seen by a reduced metabolic capability. During adaptation there was no indication that a high mutation rate was counterselected. These data show that S. typhimurium can rapidly and extensively increase its fitness in mice but this niche specialization is, at least in mutators, associated with a cost.  相似文献   

3.
Mutation is the source of both beneficial adaptive variation and deleterious genetic load, fueling the opposing selective forces than shape mutation rate evolution. This dichotomy is well illustrated by the evolution of the mutator phenotype, a genome-wide 10- to 100-fold increase in mutation rate. This phenotype has often been observed in clonally expanding populations exposed to novel or frequently changing conditions. Although studies of both experimental and natural populations have shed light on the evolutionary forces that lead to the spread of the mutator allele through a population, significant gaps in our understanding of mutator evolution remain. Here we use an experimental evolution approach to investigate the conditions required for the evolution of a reduction in mutation rate and the mechanisms by which populations tolerate the accumulation of deleterious mutations. We find that after ~6,700 generations, four out of eight experimental mutator lines had evolved a decreased mutation rate. We provide evidence that the accumulation of deleterious mutations leads to selection for reduced mutation rate clones in populations of mutators. Finally, we test the long-term consequences of the mutator phenotype, finding that mutator lines follow different evolutionary trajectories, some of which lead to drug resistance.  相似文献   

4.
To isolate some new genes controlling the process of spontaneous mutagenesis, a collection of 16 yeast strains with enhanced rate of spontaneous canavanine resistant mutations was obtained. Genetical analysis allowed to define that the mutator phenotype of these strains is due to a single nuclear mutation. Such mutations were called hsm (high spontaneous mutagenesis). Recombinational test showed that 5 mutants under study carried 5 nonallelic mutations. It was revealed that the mutation hsm3-1 is a nonspecific mutator elevating the rate of both spontaneous canavanine resistant mutations and the frequency of reversions in mutations lys1-1 and his1-7. Genetical analysis revealed that mutation hsm3-1 is recessive. The study of cross sensitivity of mutator strains to physical and chemical mutagens demonstrated that 12 of 16 hsm mutants were resistant to the lethal action of UV, gamma rays and methylmethanesulfonate, and 4 mutants were only sensitive to these factors. Possible nature of hsm mutations is discussed.  相似文献   

5.
Bull JJ  Wilke CO 《Genetics》2008,180(2):1061-1070
Lethal mutagenesis, the killing of a microbial pathogen with a chemical mutagen, is a potential broad-spectrum antiviral treatment. It operates by raising the genomic mutation rate to the point that the deleterious load causes the population to decline. Its use has been limited to RNA viruses because of their high intrinsic mutation rates. Microbes with DNA genomes, which include many viruses and bacteria, have not been considered for this type of treatment because their low intrinsic mutation rates seem difficult to elevate enough to cause extinction. Surprisingly, models of lethal mutagenesis indicate that bacteria may be candidates for lethal mutagenesis. In contrast to viruses, bacteria reproduce by binary fission, and this property ensures their extinction if subjected to a mutation rate >0.69 deleterious mutations per generation. The extinction threshold is further lowered when bacteria die from environmental causes, such as washout or host clearance. In practice, mutagenesis can require many generations before extinction is achieved, allowing the bacterial population to grow to large absolute numbers before the load of deleterious mutations causes the decline. Therefore, if effective treatment requires rapid population decline, mutation rates 0.69 may be necessary to achieve treatment success. Implications for the treatment of bacteria with mutagens, for the evolution of mutator strains in bacterial populations, and also for the evolution of mutation rate in cancer are discussed.  相似文献   

6.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

7.
Over the course of thousands of generations of growth in a glucose-limited environment, 3 of 12 experimental populations of Escherichia coli spontaneously and independently evolved greatly increased mutation rates. In two of the populations, the mutations responsible for this increased mutation rate lie in the same region of the mismatch repair gene mutL. In this region, a 6-bp repeat is present in three copies in the gene of the wild-type ancestor of the experimental populations but is present in four copies in one of the experimental populations and two copies in the other. These in-frame mutations either add or delete the amino acid sequence LA in the MutL protein. We determined that the replacement of the wild-type sequence with either of these mutations was sufficient to increase the mutation rate of the wild-type strain to a level comparable to that of the mutator strains. Complementation of strains bearing the mutator mutations with wild-type copies of either mutL or the mismatch repair gene uvrD rescued the wild-type mutation rate. The position of the mutator mutations-in the region of MutL known as the ATP lid-suggests a possible deficiency in MutL's ATPase activity as the cause of the mutator phenotype. The similarity of the two mutator mutations (despite the independent evolutionary histories of the populations that gave rise to them) leads to a discussion of the potential adaptive role of DNA repeats.  相似文献   

8.
Huang ME  Rio AG  Galibert MD  Galibert F 《Genetics》2002,160(4):1409-1422
The Pol32 subunit of S. cerevisiae DNA polymerase (Pol) delta plays an important role in replication and mutagenesis. Here, by measuring the CAN1 forward mutation rate, we found that either POL32 or REV3 (which encodes the Pol zeta catalytic subunit) inactivation produces overlapping antimutator effects against rad mutators belonging to three epistasis groups. In contrast, the msh2Delta pol32Delta double mutant exhibits a synergistic mutator phenotype. Can(r) mutation spectrum analysis of pol32Delta strains revealed a substantial increase in the frequency of deletions and duplications (primarily deletions) of sequences flanked by short direct repeats, which appears to be RAD52 and RAD10 independent. To better understand the pol32Delta and rev3Delta antimutator effects in rad backgrounds and the pol32Delta mutator effect in a msh2Delta background, we determined Can(r) mutation spectra for rad5Delta, rad5Delta pol32Delta, rad5Delta rev3Delta, msh2Delta, msh2Delta pol32Delta, and msh2Delta rev3Delta strains. Both rad5Delta pol32Delta and rad5Delta rev3Delta mutants exhibit a reduction in frameshifts and base substitutions, attributable to antimutator effects conferred by the pol32Delta and rev3Delta mutations. In contrast, an increase in these two types of alterations is attributable to a synergistic mutator effect between the pol32Delta and msh2Delta mutations. Taken together, these observations indicate that Pol32 is important in ensuring genome stability and in mutagenesis.  相似文献   

9.
A selection procedure was devised to select for mutants of Escherichia coli K-12 with enhanced rates of spontaneous frameshift mutation. Three types of mutants were isolated. Two of the mutations apparently represent alleles of previously isolated mutL13 and mutS3. The third type of mutation, represented by two alleles, lies between lysA and thyA, and has been designated mutR. mutR increases the rate of spontaneous frameshift mutation and also the rate of base substitution mutations. The mutator phenotype is recessive. Reversion of a lac amber mutation located on an episome is increased in the presence of the mutator, indicating that mutR can act in trans. No change in sensitivity to ultraviolet irradiation or mitomycin C could be found when mutR34 was compared to the isogenic mutR+ strain. The mutator's activity was little affected by the type of medium in which the strain was grown. Deoxyribonucleoside triphosphate pools were normal in mutR34. Intergenic recombination frequencies were the same in mutR and mutR and mutR+ strains, but a two- to threefold increase in intragenic recombination was observed in Hfr times Fminus crosses when the recipeint was mutR34 as compared with mutR+. This increase appeared independent of the distance between the two markers within the gene in which the crossover took place.  相似文献   

10.
To study the role of mutator bacteria in the evolution of bacterial populations, we followed the impact of the mutation rate of Escherichia coli strains in the colonisation of the gut of axenic mice and the evolution of the mutation rate of bacterial populations living in the gut. We show that mutator bacteria have an advantage during the colonization. This adaptive advantage comes from their ability to generate adaptive mutations faster than wild type strains, mutations that allow their maintenance in the ecosystem. However, while mutator bacteria are becoming specialised to the environment they are living in, they accumulate mutations that may be deleterious or lethal in secondary environments. By following the evolution of the mutation rate of bacterial populations living in the gut of mice receiving antibiotics, we show that this therapy selects not only for antibiotic resistant mutants but also for mutator alleles that enhance mutation rates and are responsible for the appearance of the resistance. The costs of a high mutation rate, due to the accumulation of mutations, is seen in environments where changes are recurrent. In an ever-changing situation where every change is new, mutator bacteria might help the evolution of bacterial populations.  相似文献   

11.
Beckman RA  Loeb LA 《Genetics》2005,171(4):2123-2131
Development of cancer requires the acquisition of multiple oncogenic mutations and selection of the malignant clone. Cancer evolves within a finite host lifetime and mechanisms of carcinogenesis that accelerate this process may be more likely to contribute to the development of clinical cancers. Mutator mutations are mutations that affect genome stability and accelerate the acquisition of oncogenic mutations. However, mutator mutations will also accelerate the accumulation of mutations that decrease cell proliferation, increase apoptosis, or affect other key fitness parameters. These "reduced-fitness" mutations may mediate "negative clonal selection," i.e., selective elimination of premalignant mutator clones. Target reduced-fitness loci may be "recessive" (both copies must be mutated to reduce fitness) or "dominant" (single-copy mutation reduces fitness). A direct mathematical analysis is applied to negative clonal selection, leading to the conclusion that negative clonal selection against mutator clones is unlikely to be a significant effect under realistic conditions. In addition, the relative importance of dominant and recessive reduced-fitness mutations is quantitatively defined. The relative predominance of mutator mutations in clinical cancers will depend on several variables, including the tolerance of the genome for reduced-fitness mutations, particularly the number and potency of dominant reduced-fitness loci.  相似文献   

12.
H. Roche  R. D. Gietz    B. A. Kunz 《Genetics》1994,137(3):637-646
The yeast REV3 gene has been predicted to encode a DNA polymerase specializing in translesion synthesis. This polymerase likely participates in spontaneous mutagenesis, as rev3 mutants have an antimutator phenotype. Translesion synthesis also may be necessary for the mutator caused by a RAD1 (nucleotide excision repair) deletion (rad1Δ). To further examine the role of REV3 in spontaneous mutagenesis, we characterized SUP4-o mutations that arose spontaneously in strains having combinations of normal or mutant REV3 and RAD1 alleles. The largest fraction of the rev3Δ-dependent mutation rate decrease was observed for single base-pair substitutions and deletions, although the rates of all mutational classes detected in the RAD1 background were reduced by at least 30%. Interestingly, inactivation of REV3 was associated with a doubling of the number of sites at which the retrotransposon Ty inserted. rev3Δ also greatly diminished the magnitude of the rad1Δ mutator, but not to the rev3Δ antimutator level, implicating REV3-dependent and independent processes in the rad1Δ mutator effect. However, the specificity of the rev3Δ antimutator suggested that the same REV3-dependent processes gave rise to the majority of spontaneous mutations in the RAD1 and rad1Δ strains.  相似文献   

13.
DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and MutS and between HexB and MutL prompted us to investigate the effect of expressing hex genes in E. coli. Complementation of mutS or mutL mutations, which confer a mutator phenotype, was assayed by introducing on a multicopy plasmid the hexA and hexB genes, under the control of an inducible promoter, either individually or together in E. coli strains. No decrease in mutation rate was conferred by either hexA or hexB gene expression. However, a negative complementation effect was observed in wild-type E. coli cells: expression of hexA resulted in a typical Mut- mutator phenotype. hexB gene expression did not increase the mutation rate either individually or in conjunction with hexA. Since expression of hexA did not affect the mutation rate in mutS mutant cells and the hexA-induced mutator effect was recA independent, it is concluded that this effect results from inhibition of the Mut system. We suggest that HexA, like its homolog MutS, binds to mismatches resulting from replication errors, but in doing so it protects them from repair by the Mut system. In agreement with this hypothesis, an increase in mutS gene copy number abolished the hexA-induced mutator phenotype. HexA protein could prevent repair either by being unable to interact with Mut proteins or by producing nonfunctional repair complexes.  相似文献   

14.
The isolation and characterization of Escherichia coli mutator genes have led to a better understanding of DNA replication fidelity mechanisms and to the discovery of important DNA repair pathways and their relationship to spontaneous mutagenesis. Mutator strains in a population of cells can be beneficial in that they allow rapid selection of variants during periods of stress, such as drug exposure.  相似文献   

15.
A computer program for the generation and analysis of in silico random point mutagenesis libraries is described. The program operates by mutagenizing an input nucleic acid sequence according to mutation parameters specified by the user for each sequence position and type of point mutation. The program can mimic almost any type of random mutagenesis library, including those produced via error-prone PCR (ep-PCR), mutator Escherichia coli strains, chemical mutagenesis, and doped or random oligonucleotide synthesis. The program analyzes the generated nucleic acid sequences and/or the associated protein library to produce several estimates of library diversity (number of unique sequences, point mutations, and single point mutants) and the rate of saturation of these diversities during experimental screening or selection of clones. This information allows one to select the optimal screen size for a given mutagenesis library, necessary to efficiently obtain a certain coverage of the sequence-space. The program also reports the abundance of each specific protein mutation at each sequence position, which is useful as a measure of the level and type of mutation bias in the library. Alternatively, one can use the program to evaluate the relative merits of preexisting libraries, or to examine various hypothetical mutation schemes to determine the optimal method for creating a library that serves the screen/selection of interest. Simulated libraries of at least 109 sequences are accessible by the numerical algorithm with currently available personal computers; an analytical algorithm is also available which can rapidly calculate a subset of the numerical statistics in libraries of arbitrarily large size. A multi-type double-strand stochastic model of ep-PCR is developed in an appendix to demonstrate the applicability of the algorithm to amplifying mutagenesis procedures. Estimators of DNA polymerase mutation-type-specific error rates are derived using the model. Analyses of an alpha-synuclein ep-PCR library and NNS synthetic oligonucleotide libraries are given as examples.  相似文献   

16.
17.
Isolation and affinity maturation of hapten-specific antibodies   总被引:1,自引:0,他引:1  
More and more recombinant antibodies specific for haptens such as drugs of abuse, dyes and pesticides are being isolated from antibody libraries. Thereby isolated antibodies tend to possess lower affinity than their parental, full-size counterparts, and therefore the isolation techniques must be optimized or the antibody genes must be affinity-matured in order to reach high affinities and specificities required for practical applications. Several strategies have been explored to obtain high-affinity recombinant antibodies from antibody libraries: At the selection level, biopanning optimization can be performed through elution with free hapten, analogue pre-incubation and subtractive panning. At the mutagenesis level, techniques such as random mutagenesis, bacterial mutator strains passaging, site-directed mutagenesis, mutational hotspots targeting, parsimonious mutagenesis, antibody shuffling (chain, DNA and staggered extension process) have been used with various degrees of success to affinity mature or modify hapten-specific antibodies. These techniques are reviewed, illustrated and compared.  相似文献   

18.
Loss of DNA mismatch repair due to mutation or diminished expression of the MLH1 gene is associated with genome instability and cancer. In this study, we used a yeast model system to examine three circumstances relevant to modulation of MLH1 function. First, overexpression of wild-type MLH1 was found to cause a strong elevation of mutation rates at three different loci, similar to the mutator effect of MLH1 gene inactivation. Second, haploid yeast strains with any of six mlh1 missense mutations that mimic germ line mutations found in human cancer patients displayed a strong mutator phenotype consistent with loss of mismatch repair function. Five of these mutations affect amino acids that are homologous to residues suggested by recent crystal structure and biochemical analysis of Escherichia coli MutL to participate in ATP binding and hydrolysis. Finally, using a highly sensitive reporter gene, we detected a mutator phenotype of diploid yeast strains that are heterozygous for mlh1 mutations. Evidence suggesting that this mutator effect results not from reduced mismatch repair in the MLH1/mlh1 cells but rather from loss of the wild-type MLH1 allele in a fraction of cells is presented. Exposure to bleomycin or to UV irradiation strongly enhanced mutagenesis in the heterozygous strain but had little effect on the mutation rate in the wild-type strain. This damage-induced hypermutability may be relevant to cancer in humans with germ line mutations in only one MLH1 allele.  相似文献   

19.
An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O2) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.  相似文献   

20.
Defects in the mismatch repair protein MSH2 cause tolerance to DNA damage. We report how cancer-derived and polymorphic MSH2 missense mutations affect cisplatin cytotoxicity. The chemotolerance phenotype was compared with the mutator phenotype in a yeast model system. MSH2 missense mutations display a strikingly different effect on cell death and genome instability. A mutator phenotype does not predict chemotolerance or vice versa. MSH2 mutations that were identified in tumors (Y109C) or as genetic variations (L402F) promote tolerance to cisplatin, but leave the initial mutation rate of cells unaltered. A secondary increase in the mutation rate is observed after cisplatin exposure in these strains. The mutation spectrum of cisplatin-resistant mutators identifies persistent cisplatin adduction as the cause for this acquired genome instability. Our results demonstrate that MSH2 missense mutations that were identified in tumors or as polymorphic variations can cause increased cisplatin tolerance independent of an initial mutator phenotype. Cisplatin exposure promotes drug-induced genome instability. From a mechanistical standpoint, these data demonstrate functional separation between MSH2-dependent cisplatin cytotoxicity and repair. From a clinical standpoint, these data provide valuable information on the consequences of point mutations for the success of chemotherapy and the risk for secondary carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号