首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas exotoxin A. Membrane binding, insertion, and traversal   总被引:4,自引:0,他引:4  
Using vesicle targets composed of phosphatidylcholine and cholesterol (1:1 molar ratio), we found that Pseudomonas aeruginosa exotoxin A (PTx) binding and insertion are not only dependent on pH (Zalman, L.S., and Wisnieski, B.J. (1985) Infect. Immun. 50, 630-635) but also on ionic strength, reaching a maximum in pH 4 buffer that contains 150-200 mM NaCl. Insertion was monitored by photolabeling with an intramembranous probe. Higher levels of binding and insertion were attained with vesicles that contained 2.5 mol% dicetylphosphate than with neutral vesicles. Positively charged vesicles (2.7 mol% stearylamine) were the least effective targets. At pH 7.4, all binding levels were depressed. While PTx binding increased with increasing temperature, the relative proportion of the vesicle-associated toxin that was photolabeled decreased. The most likely explanation for the decrease is that the bilayer translocation rates increased with increasing temperature, and hence fewer PTx molecules were accessible at the time of photolabeling. At 37 degrees C, binding and insertion both plateaued within 10 min of lowering the pH to 4. After 10 min, the amount of bound toxin decreased slightly with time but there was a dramatic decrease in photolabeling, indicating that inserted PTx had begun to cross the bilayer. This was verified by the finding that when PTx was incubated with vesicles that contained trypsin, cleavage occurred only in those samples in which the pH was shifted down to pH 4. Entry is triggered by an acid-induced conformational change that promotes productive binding and insertion. After insertion, the kinetics of membrane traversal appear to be regulated by the physical properties of the bilayer.  相似文献   

2.
Studies with human U937 cells as targets established that a 15-min exposure to rTNF at pH 5.3 caused a significant increase in TNF-mediated cytolysis when compared to cells exposed to TNF at pH 7.4. A detailed examination of TNF-membrane interactions revealed that although TNF bound avidly to model membrane targets, no damage was generated under any condition tested. Binding of TNF, monitored with 125I-labeled as well as unlabeled protein, was enhanced at low pH. In the pH range tested (i.e., 4 to 8), target membrane permeability actually decreased in the presence of TNF. This membrane stabilization may be a consequence of TNF insertion into the target bilayer, a process we detected through use of an intramembranous photolabeling assay; interestingly, the efficiency of TNF insertion into membranes increased dramatically with decreasing pH. We conclude that native TNF does not cause pore formation directly and that its ability to induce cell lysis, as monitored by 51Cr release, is a consequence of some as yet obscure signaling event or intracellular activity. Parallel studies were carried out with diphtheria toxin, a protein with a more thoroughly characterized pH-dependent intoxification pathway. This toxin displayed acid-enhanced activities with both biologic and artificial targets.  相似文献   

3.
The 1,024-amino-acid acylated hemolysin of Escherichia coli subverts host cell functions and causes cell lysis. Both activities require insertion of the toxin into target mammalian cell membranes. To identify directly the principal toxin sequences dictating membrane binding and insertion, we assayed the lipid bilayer interaction of native protoxin, stably active toxin, and recombinant peptides. Binding was assessed by flotation of protein-liposome mixtures through density gradients, and insertion was assessed by labeling with a photoactivatable probe incorporated into the target lipid bilayer. Both the active acylated hemolysin and the inactive unacylated protoxin were able to bind and also insert. Ca(2+) binding, which is required for toxin activity, did not influence the in vitro interaction with liposomes. Three overlapping large peptides were expressed separately. A C-terminal peptide including residues 601 to 1024 did not interact in either assay. An internal peptide spanning residues 496 to 831, including the two acylation sites, bound to phospholipid vesicles and showed a low level of insertion-dependent labeling. In vitro acylation had no effect on the bilayer interaction of either this peptide or the full-length protoxin. An N-terminal peptide comprising residues 1 to 520 also bound to phospholipid vesicles and showed strong insertion-dependent labeling, ca. 5- to 25-fold that of the internal peptide. Generation of five smaller peptides from the N-terminal region identified the principal determinant of lipid insertion as the hydrophobic sequence encompassing residues 177 to 411, which is conserved among hemolysin-related toxins.  相似文献   

4.
Wang J  Rosconi MP  London E 《Biochemistry》2006,45(26):8124-8134
After low pH-triggered membrane insertion, the T domain of diphtheria toxin helps translocate the catalytic domain of the toxin across membranes. In this study, the hydrophilic N-terminal helices of the T domain (TH1-TH3) were studied. The conformation triggered by exposure to low pH and changes in topography upon membrane insertion were studied. These experiments involved bimane or BODIPY labeling of single Cys introduced at various positions, followed by the measurement of bimane emission wavelength, bimane exposure to fluorescence quenchers, and antibody binding to BODIPY groups. Upon exposure of the T domain in solution to low pH, it was found that the hydrophobic face of TH1, which is buried in the native state at neutral pH, became exposed to solution. When the T domain was added externally to lipid vesicles at low pH, the hydrophobic face of TH1 became buried within the lipid bilayer. Helices TH2 and TH3 also inserted into the bilayer after exposure to low pH. However, in contrast to helices TH5-TH9, overall TH1-TH3 insertion was shallow and there was no significant change in TH1-TH3 insertion depth when the T domain switched from the shallowly inserting (P) to deeply inserting (TM) conformation. Binding of streptavidin to biotinylated Cys residues was used to investigate whether solution-exposed residues of membrane-inserted T domain were exposed on the external or internal surface of the bilayer. These experiments showed that when the T domain is externally added to vesicles, the entire TH1-TH3 segment remains on the cis (outer) side of the bilayer. The results of this study suggest that membrane-inserted TH1-TH3 form autonomous segments that neither deeply penetrate the bilayer nor interact tightly with the translocation-promoting structure formed by the hydrophobic TH5-TH9 subdomain. Instead, TH1-TH3 may aid translocation by acting as an A-chain-attached flexible tether.  相似文献   

5.
6.
L A Chung  E London 《Biochemistry》1988,27(4):1245-1253
Low pH is believed to trigger membrane penetration by diphtheria toxin in vivo. The effect of pH upon the binding of the toxin to unilamellar model membrane vesicles was determined by using a fluorescence quenching assay. A series of studies were undertaken to determine the effect of lipid composition upon the binding of lipids to the toxin. The binding of toxin to various small unilamellar vesicles of zwitterionic or anionic lipids was similar in extent and was accompanied by deep penetration of the toxin into the fatty acyl chains, in agreement with previous studies. However, the transition pH, which is the pH at and below which toxin binding becomes significant, depended upon the fraction of anionic lipids, being highest with model membranes composed totally of anionic lipids (pH 5.8) and lowest with membranes composed of zwitterionic lipids (pH 5.2). Except for vesicle charge, the transition pH was independent of the nature of the lipid polar groups used. High ionic strength, which had no effect on the transition pH with zwitterionic vesicles, was found to shift the transition pH with totally anionic vesicles to pH 5.2. This suggests that both direct protein-lipid electrostatic interactions and the ionic double layer, which gives rise to a low local pH around anionic vesicles, contribute to the shift in the transition pH. The effect of lipid composition upon the kinetics and strength of binding was also examined. At low pH, binding was rapid and tight. Binding to vesicles containing 20 wt % anionic phosphatidylglycerol was faster and tighter than binding to vesicles of zwitterionic phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin.  相似文献   

8.
The translocation domain of diphtheria toxin inserts in membrane and becomes functional when the pH inside endosomes is acid. At that stage, the domain is in a partially folded state; this prevents the use of high-resolution methods for the characterization of its functional structure. On that purpose, we report here the use of hydrogen/deuterium exchange experiments coupled to mass spectrometry. The conformation changes during the different steps of insertion into lipid bilayer are monitored with a resolution of few residues. Three parts of the translocation domain can be distinguished. With a high protection against exchange, the C-terminal hydrophobic helical hairpin is embedded in the membrane. Despite a lower protection, a significant effect in the presence of lipid vesicles shows that the N-terminal part is in interaction with the membrane interface. The sensitivity to the ionic strength indicates that electrostatic interactions are important for the binding. The middle part of the domain has an intermediate protection; this suggests that this part of the domain can be embedded within the membrane but remains quite dynamic. These results provide unprecedented insight into the structure reorganization of the protein to go from a soluble state to a membrane-inserted one.  相似文献   

9.
The passage by the low endosomal pH is believed to be an essential step of the diphtheria toxin (DT) intoxication process in vivo. Several studies have suggested that this low pH triggers the insertion of DT into the membrane. We demonstrate here that its insertion into large unilamellar vesicles (LUV) is accompanied by a strong destabilization of the vesicles at low pH. The destabilization has been studied by following the release of a fluorescent dye (calcein) encapsulated in the liposomes. The influence of the lipid composition upon this process has been examined. At a given pH, the calcein release is always faster for a negatively charged (asolectin) than for a zwitterionic (egg PC) system. Moreover, the transition pH, which is the pH at which the toxin-induced release becomes significant, is shifted upward for the asolectin LUV as compared to the egg PC LUV. No calcein release is observed for rigid phospholipid vesicles (DPPC and DPPC/DPPA 9/1 mol/mol) below their transition temperature whereas DT induces an important release of the dye in the temperature range corresponding to the phase transition. The transition pH associated to the calcein release from egg PC vesicles is identical with that corresponding to the exposure of the DT hydrophobic domains, as revealed here by the binding of a hydrophobic probe (ANS) to the toxin. This suggests the involvement of these domains in the destabilization process. Both A and B fragments destabilize asolectin and PC vesicles in a pH-dependent manner but to a lesser extent than the entire toxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The interaction of Tetanus toxin with phospholipid vesicles containing gangliosides (GD1a, GD1b or GT1b) or phosphatidic acid has been investigated at neutral or acidic pH. Change in the thermotropic properties of the vesicles occurred only after addition of the toxin at acidic pH, and led to surface binding or membrane insertion of the protein, dependent on the physical state of the membrane. Most remarkably, toxin addition at acidic pH to dipalmitoyl-phosphatidylcholine vesicles containing GT1b ganglioside, caused formation of ganglioside microdomains on the vesicle surface.  相似文献   

11.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

12.
The membrane insertion of diphtheria toxin and of its B chain mutants crm 45, crm 228 and crm 1001 has been followed by hydrophobic photolabelling with photoactivatable phosphatidylcholine analogues. It was found that diphtheria toxin binds to the lipid bilayer surface at neutral pH while at low pH both its A and B chains also interact with the hydrocarbon chains of phospholipids. The pH dependence of photolabelling of the two protomers is different: the pKa of fragment B is around 5.9 while that of fragment A is around 5.2. The latter value correlates with the pH of half-maximal intoxication of cells incubated with the toxin in acidic mediums. These results suggest that fragment B penetrates into the bilayer first and assists the insertion of fragment A and that the lipid insertion of fragment B is not the rate-controlling step in the process of membrane translocation of diphtheria toxin. crm 45 behaves as diphtheria toxin in the photolabelling assay but, nonetheless, it is found to be three orders of magnitude less toxic than diphtheria toxin on acid-treated cells, suggesting that the 12-kDa COOH-terminal segment of diphtheria toxin is important not only for its binding to the cell receptor but also for the membrane translocation of the toxin. It is suggested that crm 1001 is non-toxic because of a defect in its membrane translocation which occurs at a lower extent and at a lower pH than that of the native toxin; as a consequence crm 1001 may be unable to escape from the endosome lumen into the cytoplasm before the fusion of the endosome with lysosomes.  相似文献   

13.
Integrated light-scattering (ILS) spectroscopy was used to monitor the binding of the colicin E1 channel peptide to POPC:POPG large unilamellar vesicles (LUV; 60:40, mol:mol) at acidic pH (3.5). Binding conditions were chosen such that nearly all of the channel peptide was bound to the vesicles with little free peptide remaining in solution. The increase in vesicle size upon the insertion of the channel peptide was measured by performing a discrete inversion technique on data obtained from an ILS spectrometer. Vesicle size number distributions were determined for five different systems having peptide/vesicle ratios of approximately 0, 77, 154, 206, and 257. The experiment was repeated four times (twice at two different vesicle concentrations) to determine reproducibility. The relative changes in vesicle radius upon peptide binding to the membrane vesicles was remarkably reproducible even though these changes represented only a few nanometers. A comparison of vesicle size number distributions in the absence of bound peptide was made between ILS and dynamic light scattering (DLS) data and showed similar results. However, DLS was incapable of detecting the small changes due to peptide-induced vesicle swelling. The membrane-bound volume of the colicin E1 channel peptide was approximately 177 +/- 22 nm3. These data indicate that in the absence of a membrane potential (closed channel state) the colicin E1 channel peptide inserts into the membrane resulting in a significant displacement of the lipid bilayer as evidenced from the dose-dependent increase in the vesicle radius.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We investigated the interaction of tetanus toxin with small unilamellar vesicles composed of different phospholipids as a function of pH, toxin concentration, temperature, and ionic strength of the solution. Tetanus toxin increased the permeability of the vesicles to fluorescent markers of molecular weight up to 700. The time course of the permeabilization was described as the sum of two exponential components of which the faster accounts for more than 70% of the total effect. Both time constants decreased when the pH of the solution was lowered and when vesicles contained negative lipids. These results can be explained in terms of a phenomenological model based on reaction rate theory. The model assumes that tetanus toxin, after equilibrating with the local pH existing at the surface of the vesicles, inserts into the lipid bilayer forming an ionic channel through which solutes can diffuse. Trigger event for the insertion of the toxin is the protonation, and consequent neutralization of one charged group which makes the molecule more hydrophobic. The intrinsic pK of this group was found to be 3.4 +/- 0.2, suggesting that it may be a carboxyl group. Since the toxin equilibrates with the local pH, the enhancing effect of acidic phospholipids is merely explained by the creation of a negative surface potential which increases the local proton concentration. This was confirmed by the inhibitory effect of high Na+ concentration which reduced the surface charge by screening and specific binding. We found still small differences between the lipids tested and the following order of sensitivity to the action of the toxin: phosphatidylinositol greater than phosphatidylserine greater than phosphatidylcholine approximately cholesterol. The activation energy for the two time constants was found to be 19.8 and 14.8 kcal/mol, fast and slow component, respectively, i.e., slightly larger than that for pure diffusion through the bilayer. The permeabilization induced by tetanus toxin is a voltage-dependent process because vesicles bearing an inner negative potential were depolarized very quickly whereas those bearing an inner positive voltage were barely depolarized at all.  相似文献   

15.
Binding of a radiolabeled sea anemone cytolysin to erythrocyte membranes   总被引:1,自引:0,他引:1  
Stichodactyla helianthus cytolysin III, a 17 kDa basic polypeptide isolated from a Caribbean sea anemone, is one of the most potent hemolysins yet found in a living organism. This toxin has been reported to form new ion channels in artificial lipid bilayer membranes. The ability of this toxin to attack cell membranes is greatly enhanced by the presence of sphingomyelin. In order to investigate the mechanism by which the cytolysin causes cell lysis, we have prepared a highly active [3H]cytolysin derivative by reductive methylation with sodium cyanoborohydride and [3H]formaldehyde. A dimethylated toxin derivative was used to investigate the basis for the differential lytic activity of this polypeptide upon erythrocytes from six mammalian species. Using both direct [3H]toxin binding and indirect (Thron method) binding techniques, we found that the interspecies differences are due to variable membrane susceptibilities toward the bound toxin, rather than to differences in membrane affinity for the toxin. Similarly, we showed the enhanced lytic activity of the toxin for rat erythrocytes at elevated pH to be caused by enhanced activity of the bound toxin.  相似文献   

16.
To probe the role of the protective antigen (PA) component of anthrax toxin in toxin entry into animals cells, we examined the membrane channel-forming properties and hydrophobicity of intact and trypsin-cleaved forms of the protein at various pH values. At neutral pH neither form caused release of entrapped K+ from unilamellar lipid vesicles. At pH values below 6.0, however, K+ was rapidly released upon addition of either the nicked PA (PAN) or the 63 kDa tryptic fragment of PA (PA63), which has been implicated in the toxin entry process. Under the same conditions intact PA exhibited only weak channel-forming activity, and PA20, the complementary tryptic fragment, showed no such activity. Both PA and PA63 exhibited enhanced hydrophobicity at acidic pH values, but the enhancement was greater and the pH threshold higher with PA63. Our findings indicate that proteolytic removal of PA20 from intact PA enables the residual protein, PA63, to adopt a conformation at mildly acidic pH values that permits it to insert readily and form channels in membranes. Thus acidic conditions within endocytic vesicles may trigger membrane insertion of PA63, which in turn promotes translocation of ligated effector moieties, edema factor or lethal factor, across the vesicle membrane into the cytosol.  相似文献   

17.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

18.
The role of specific receptors in the translocation of diphtheria toxin A fragment to the cytosol and for the insertion of the B fragment into the cell membrane was studied. To induce nonspecific binding to cells, toxin was either added at low pH, or biotinylated toxin was added at neutral pH to cells that had been treated with avidin. In both cases large amounts of diphtheria toxin became associated with the cells, but there was no increase in the toxic effect. There was also no increase in the amount of A fragment that was translocated to the cytosol, as estimated from protection against externally added Pronase E. In cells where specific binding was abolished by treatment with 12-O-tetradecanoyl-phorbol 13-acetate, trypsin, or 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, unspecific binding did not induce intoxication or protection against protease. This was also the case in untreated L cells, which showed no specific binding of the toxin. When Vero cells with diphtheria toxin bound to specific receptors were exposed to low pH, the cells were permeabilized to K+, whereas this was not the case when the toxin was bound nonspecifically at low pH or via avidin-biotin. The data indicate that the cell-surface receptor for diphtheria toxin facilitates both insertion of the B fragment into the cell membrane and translocation of the A fragment to the cytosol.  相似文献   

19.
Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.  相似文献   

20.
Reevaluation of the Role of Gangliosides as Receptors for Tetanus Toxin   总被引:4,自引:2,他引:2  
Binding of tetanus toxin to rat brain membranes was of lower affinity and capacity when binding was determined in 150 mM NaCl, 50 mM Tris-HCl (pH 7.4) than in 25 mM Tris-acetate (pH 6.0). Binding under both conditions was reduced by treating the membranes with neuraminidase. Pronase treatment, however, reduced toxin binding only in the Tris-saline buffer (pH 7.4). In addition, the concentration of gangliosides required to inhibit toxin binding was 100-fold higher in Tris-saline compared to Tris-acetate buffer. The toxin receptors in the membranes were analyzed by ligand blotting techniques. Membrane components were dissolved in sodium dodecyl sulfate, separated by polyacrylamide gel electrophoresis, and transferred to nitrocellulose sheets, which were overlaid with 125I-labeled toxin. Tetanus toxin bound only to material that migrated in the region of the dye front and was extracted with lipid solvents. Gangliosides isolated from the lipid extracts or other sources were separated by TLC on silica gel and the chromatograms were overlaid with labeled tetanus toxin. The toxin bound to areas where the major rat brain gangliosides migrated. When equimolar amounts of different purified gangliosides were applied to the chromatogram, binding of the toxin was in the order GD1b approximately equal to GT1b approximately equal to GQ1b greater than GD2 greater than GD3 much greater than GD1a approximately equal to GM1. Thus, the toxin appears to have the highest affinity for gangliosides with a disialyl group linked to the inner galactosyl residue. When binding of tetanus toxin to transfers and chromatograms was determined in the Tris-saline buffer (pH 7.4), the toxin bound to the same components but the extent of binding was markedly reduced compared with the low-salt and -pH conditions. Our results indicate that the interaction of tetanus toxin with rat brain membranes and gangliosides is greatly reduced under more physiological conditions of salt and pH and raise the possibility that other membrane components such as sialoglycoproteins may be receptors for the toxin under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号