首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane proteins.   总被引:1,自引:0,他引:1  
  相似文献   

2.
Biological membranes control the flow of molecules into and out of cells, and they transmit information about the milieu. Structural studies of membrane-containing viruses provide one way to study these membranes in situ. Cryo-electron microscopy and image reconstruction of bacteriophage Bam35 to 7.3 A resolution revealed a membrane bilayer constrained within an icosahedrally symmetric pseudo T = 25 capsid. A total of 60 large transmembrane protein complexes affect the curvature and thickness of the membrane. Here, we describe these membrane parameters quantitatively. Furthermore, we show that Bam35 differs from bacteriophage PRD1 in these parameters, even though the two viruses share the same principles of capsid architecture. Most notably, each virus possesses a tape measure protein suggesting a general mechanism for capsid size determination in icosahedral viruses.  相似文献   

3.
Membrane transport of proteins   总被引:3,自引:0,他引:3  
  相似文献   

4.
Membrane glycine transport proteins   总被引:1,自引:1,他引:0  
Structurally, the simplest amino acid is glycine, and it has a number of important yet distinct functions in the body. This review focuses on the different transport systems and the associated carrier proteins for glycine that are responsible for its movement across biological membranes. Transport proteins in the class GLYT appear to be the most specific for glycine. However, the B0+ system also carries significant amounts of glycine. Other amino acid transport systems capable of carrying small amounts of glycine are ASC, asc and system L. In addition, an ATP-dependent transport process exists that takes up glycine into synaptic vesicles at nerve endings. This is known as the vesicular inhibitory amino acid transporter since, in addition to glycine, it can transport possibly two other inhibitory neurotransmitters.  相似文献   

5.
Membrane proteins ride shotgun   总被引:3,自引:0,他引:3  
  相似文献   

6.
7.
8.
Monoclonal antibodies to different parts of bacteriorhodopsin were raised to define its topography in the membrane. It is shown that the amino acid residue Glu 194 is a part of an antigenic determinant and should be located on the membrane surface. We found that the removal of the C-terminal 17 amino acid sequence does not affect the efficiency of the proton transport in bacteriorhodopsin. From a combination of proteolysis and secondary structure prediction methods an experimentally testable structural model for bovine rhodopsin is presented. The complete amino acid sequence of the transducin γ-subunit consisting of 69 residues was determined.  相似文献   

9.
Membrane proteins have historically been recalcitrant to biophysical folding studies. However, recent adaptations of methods from the soluble protein folding field have found success in their applications to transmembrane proteins composed of both α-helical and β-barrel conformations. Avoiding aggregation is critical for the success of these experiments. Altogether these studies are leading to discoveries of folding trajectories, foundational stabilizing forces and better-defined endpoints that enable more accurate interpretation of thermodynamic data. Increased information on membrane protein folding in the cell shows that the emerging biophysical principles are largely recapitulated even in the complex biological environment.  相似文献   

10.
Over recent years, much progress has been made in the identification and characterization of factors involved in the biosynthesis of integral membrane proteins of the helix-bundle type. In addition, our knowledge of membrane protein structure and the forces stabilizing helix-helix interactions in a lipid environment is expanding rapidly. However, it is still not clear how a membrane protein folds into its final form in vivo, nor what constraints there are on the folded structure that results from the mechanistic details of translocon-mediated assembly rather than simply from the thermodynamics of protein-lipid interactions.  相似文献   

11.
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein, we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation system in bacteria and chloroplasts, unconventional protein secretion and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse, and present evidence that vesicle budding and collapse may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.  相似文献   

12.
13.
14.
Tan S  Tan HT  Chung MC 《Proteomics》2008,8(19):3924-3932
Biological membranes form an essential barrier between living cells and their external environments, as well as serve to compartmentalize intracellular organelles within eukaryotes. The latter includes membranes that envelope the nucleus, the outer and inner membranes of the mitochondria, membrane cisternae complex of the ER, Golgi apparatus, as well as lysosomes and secretory vesicles. Depending on their localizations in the whole organism and also within the cell, these membranes have different, highly specialized functions. Although 30% of naturally occurring proteins are predicted to be embedded in biological membranes, membrane proteomics is traditionally understudied due to difficulties in solubilizing, separating, and identifying membrane proteins. Given the importance of membrane proteins in the various cellular processes listed in this review, as well as the roles they play in diseases and their potential as drug targets, it is imperative that this class of proteins be better studied. With the recent advancement in technology, it is expected that some of the difficulties in membrane proteomics will be overcome, yielding new data on membrane proteins.  相似文献   

15.
Guanine nucleotide-binding proteins, G proteins, propagate incoming messages from receptors to effector proteins. They switch from an inactive to active state by exchanging a GDP molecule for GTP, and they return to the inactive form by hydrolyzing GTP to GDP. Small monomeric G proteins, such as Ras, are involved in controlling cell proliferation, differentiation and apoptosis, and they interact with membranes through isoprenyl moieties, fatty acyl moieties, and electrostatic interactions. This protein-lipid binding facilitates productive encounters of Ras and Raf proteins in defined membrane regions, so that signals can subsequently proceed through MEK and ERK kinases, which constitute the canonical MAP kinase signaling cassette. On the other hand, heterotrimeric G proteins undergo co/post-translational modifications in the alpha (myristic and/or palmitic acid) and the gamma (farnesol or geranylgeraniol) subunits. These modifications not only assist the G protein to localize to the membrane but they also help distribute the heterotrimer (Galphabetagamma) and the subunits generated upon activation (Galpha and Gbetagamma) to appropriate membrane microdomains. These proteins transduce messages from ubiquitous serpentine receptors, which control important functions such as taste, vision, blood pressure, body weight, cell proliferation, mood, etc. Moreover, the exchange of GDP by GTP is triggered by nucleotide exchange factors. Membrane receptors that activate G proteins can be considered as such, but other cytosolic, membranal or amphitropic proteins can accelerate the rate of G protein exchange or even activate this process in the absence of receptor-mediated activation. These and other protein-protein interactions of G proteins with other signaling proteins are regulated by their lipid preferences. Thus, G protein-lipid interactions control the features of messages and cell physiology.  相似文献   

16.
Intact rabbit reticulocyte cells synthesize two predominant species of polypeptides which are components of the cell plasma membrane. Previous work (Lodish, H. F. 1973. Proc. Natl. Acad. Sci. U. S. A. 70:1526- 1530.) showed that these proteins were synthesized by polyribosomes not attached to membranes. We show here that both polypeptides are confined to the cytoplasmic surface of the cell membrane. These studies utilized iodination of whole cells and of membranes with lactoperoxidase, and digestion of whole cells and membranes with chymotrypsin, One of these proteins is synthesized as a precursor, and about 20-40 amino acids are removed after it is incorporated into the membrane, We discuss the probable sites of synthesis of these and other classes of membrane proteins.  相似文献   

17.
Membrane proteins in senescent erythrocytes.   总被引:2,自引:0,他引:2       下载免费PDF全文
The examination of erythrocyte senescence has been facilitated by recent advances in techniques for the isolation of aged red cells. One of these methods, which uses biotinylated rabbit erythrocytes, has been used to examine the state of membrane proteins in effete cells. These aged red cells were found to have normal ratios of alpha-spectrin and beta-spectrin as well as normal levels of ankyrin. The observation concerning ankyrin is particularly important due to the sensitivity of this protein to proteolysis and the postulated action of proteinases in the aging process. The senescent erythrocytes were also found to have an altered ratio of bands 4.1a and 4.1b without any apparent change in the total level of 4.1. In addition, the analysis of the aged cell membranes did not show any large-molecular-mass aggregated protein at the origin of the SDS/polyacrylamide gels, indicating a lack of transglutaminase activity in the senescence process for rabbit erythrocytes. These results indicate that aging of the rabbit erythrocyte is not accompanied by gross proteolytic degradation or transglutaminase-catalysed cross-linking of membrane components.  相似文献   

18.
Molecular dynamics simulations of membrane proteins are making rapid progress, because of new high-resolution structures, advances in computer hardware and atomistic simulation algorithms, and the recent introduction of coarse-grained models for membranes and proteins. In addition to several large ion channel simulations, recent studies have explored how individual amino acids interact with the bilayer or snorkel/anchor to the headgroup region, and it has been possible to calculate water/membrane partition free energies. This has resulted in a view of bilayers as being adaptive rather than purely hydrophobic solvents, with important implications, for example, for interaction between lipids and arginines in the charged S4 helix of voltage-gated ion channels. However, several studies indicate that the typical current simulations fall short of exhaustive sampling, and that even simple protein-membrane interactions require at least ca. 1mus to fully sample their dynamics. One new way this is being addressed is coarse-grained models that enable mesoscopic simulations on multi-mus scale. These have been used to model interactions, self-assembly and membrane perturbations induced by proteins. While they cannot replace all-atom simulations, they are a potentially useful technique for initial insertion, placement, and low-resolution refinement.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号