首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Enzymes of sucrose breakdown in soybean nodules: alkaline invertase   总被引:4,自引:4,他引:0  
Morell M  Copeland L 《Plant physiology》1984,74(4):1030-1034
The specific activities of acid and alkaline invertases (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26), sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyltransferase, EC 2.4.1.13), hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1), and fructokinase (ATP: d-fructose 6-phosphotransferase, EC 2.7.1.4) were determined in soybean (Glycine max L. Merr cv Williams) nodules at different stages of development and, for comparison, in roots of nonnodulated soybeans. Alkaline invertase and sucrose synthase were both involved in sucrose metabolism in the nodules, but there was only a small amount of acid invertase present. The nodules contained more phosphorylating activity with fructose than glucose. Essentially all of the alkaline invertase, sucrose synthase, and fructokinase were in the soluble fraction of nodule extracts whereas hexokinase was in the bacteroid, plant particulate, and soluble fractions.  相似文献   

2.
The subcellular localization of hexose phosphorylating activity in extracts of pea stems has been studied by differential centrifugation and sucrose density gradient centrifugation. The hexokinase (EC 2.7.1.1) was associated with the mitochondria, whereas fructokinase (EC 2.7.1.4) was in the cytosolic fraction. Some properties of the mitochondrial hexokinase were studied. The enzyme had a high affinity for glucose (Km 76 micromolar) and mannose (Km 71 micromolar) and a relatively low affinity for fructose (Km 15.7 millimolar). The Km for MgATP was 180 micromolar. The addition of salts stimulated the activity of the hexokinase. Al3+ was a strong inhibitor at pH 7 but not at the optimum pH (8.2). The enzyme was not readily solubilized but, in experiments with intact mitochondria, was susceptible to proteolysis. A location on the outer mitochondrial membrane is suggested for the hexokinase of pea stems.  相似文献   

3.
Sucrose synthase of soybean nodules   总被引:6,自引:6,他引:0  
Sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyl transferase, EC 2.4.1.13) has been purified from the plant cytosolic fraction of soybean (Glycine max L. Merr cv Williams) nodules. The native enzyme had a molecular weight of 400,000. The subunit molecular weight was 90,000 and a tetrameric structure is proposed for soybean nodule sucrose synthase. Optimum activity in the sucrose cleavage and synthesis directions was at pH 6 and pH 9.5 respectively, and the enzyme displayed typical Michaelis-Menten kinetics. Soybean nodule sucrose synthase had a high affinity for UDP (Km, 5 micromolar) and a relatively low affinity for ADP (apparent Km, 0.13 millimolar) and CDP (apparent Km, 1.1 millimolar). The Km for sucrose was 31 millimolar. In the synthesis direction, UDPglucose (Km, 0.012 millimolar) was a more effective glucosyl donor than ADPglucose (Km, 1.6 millimolar) and the Km for fructose was 3.7 millimolar. Divalent cations stimulated activity in both the cleavage and synthesis directions and the enzyme was very sensitive to inhibition by heavy metals.  相似文献   

4.
Fructokinase (Fraction III) of Pea Seeds   总被引:5,自引:4,他引:1       下载免费PDF全文
A second fructokinase (EC 2.7.1.4) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed fructokinase (fraction III), was specific for fructose and had little activity with glucose. With fructose concentrations above 0.25 millimolar, there was strong substrate inhibition at the optimum pH (8.0) and also at pH 6.6. The apparent Km values at pH 8.0 for fructose and glucose were 0.06 millimolar and 0.14 millimolar, respectively. The apparent Km for Mg adenosine 5′-triphosphate (MgATP) was 0.06 millimolar and excess MgATP was inhibitory. Mg2+ was essential for activity but the enzyme was inhibited by excess Mg2+ or ATP. Mg adenosine 5′-pyrophosphate was also inhibitory. Activity was stimulated by the addition of monovalent cations: of those tested K+, Rb+, and NH4+ were the most effective. The possible role of fructokinase (fraction III) is discussed.  相似文献   

5.
Hexokinase II of Pea Seeds   总被引:4,自引:4,他引:0       下载免费PDF全文
A second hexokinase (EC 2.7.1.1) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed hexokinase II, had a high affinity (Km, 48 micromolar) for glucose and a relatively low affinity (Km, 10 millimolar) for fructose. The Km for MgATP was 86 micromolar. Mg2+ was required for activity, but excess Mg2+ was inhibitory. MgADP inhibited hexokinase II. The addition of salts of monovalent cations increased hexokinase II activity. Al3+ was a strong inhibitor of the enzyme at pH 6.6 but not at the optimum pH (8.2). Citrate and 3-phosphoglycerate activated pea seed hexokinase II at pH 6.6, probably by coordinating with aluminum present as a contaminant in commercial ATP. The properties of hexokinase II are compared with those of the other three hexose kinases obtained from pea seed extracts. The possible role of these enzymes in plant carbohydrate metabolism is discussed.  相似文献   

6.
Doehlert DC 《Plant physiology》1989,89(4):1042-1048
Four forms of hexose kinase activity from developing maize (Zea mays L.) kernels have been separated by ammonium sulfate precipitation, gel filtration chromatography, blue-agarose chromatography, and ion exchange chromatography. Two of these hexose kinases utilized d-glucose most effectively and are classified as glucokinases (EC 2.7.1.2). The other two hexose kinases utilized only d-fructose and are classified as fructokinases (EC 2.7.1.4). All hexose kinases analyzed had broad pH optima between 7.5 and 9.5 with optimal activity at pH 8.5. The two glucokinases differed in substrate affinities. One form had low Km values [Km(glucose) = 117 micromolar, Km(ATP) = 66 micromolar] whereas the other form had much higher Km values [Km(glucose) = 750 micromolar, Km(ATP) = 182 micromolar]. Both fructokinases had similar substrate saturation responses. The Km(fructose) was about 130 micromolar and the Km(ATP) was about 700 micromolar. Both exhibited uncompetitive substrate inhibition by fructose [Ki(fructose) = 1.40 to 2.00 millimolar]. ADP inhibited all four hexose kinase activities, whereas sugar phosphates had little effect on their activities. The data suggest that substrate concentrations are an important factor controlling hexose kinase activity in situ.  相似文献   

7.
1. Cerebral-cortex mitochondria, after purification by using high-density sucrose solutions, were extracted with Triton X-100. The total hexokinase activity of the intact mitochondria was increased by 50–80% in the Triton extracts. 2. Triton X-100 was removed from mitochondrial extracts by a combination of ammonium sulphate fractionation and DEAE-cellulose chromatography. Mitochondrial hexokinase remained soluble after removal of extractant. 3. The behaviour of solubilized mitochondrial hexokinase was compared with soluble cytoplasmic hexokinase from the same samples of cerebral cortex on identical columns of DEAE-cellulose. Two peaks were eluted from each source of hexokinase. The distribution between hexokinase peaks was similar for the two sources. Peak I (approx. 80% of the total hexokinase) from each was eluted at identical concentrations of potassium chloride and slight differences were observed in the elution profiles for peak II. 4. The purified mitochondrial hexokinase showed the following kinetic properties: peak I, Km(ATP) 0.60mm, Km(glucose) 0.042mm; peak II, Km(ATP) 0.66mm, Km(glucose) 0.043mm. The purified cytoplasmic hexokinase Michaelis constants were: peak I, Km(ATP) 0.56mm, Km(glucose) 0.048mm; peak II, Km(ATP) 0.68mm, Km(glucose) 0.062mm. 5. Although no significant differences between mitochondrial and cytoplasmic hexokinases were noted in chromatographic behaviour or in the kinetic properties studied, the purified mitochondrial enzyme was activated slightly (approx. 20%) by Triton X-100, in contrast with the cytoplasmic enzyme, which was not affected. 6. The results, taken to indicate basic similarity between mitochondrial and cytoplasmic hexokinases, are discussed in relation to the role of the two sources of enzyme in the metabolism of the tissue.  相似文献   

8.
Claus Schnarrenberger 《Planta》1990,181(2):249-255
When green leaves of spinach (Spinacia oleracea L.) were surveyed for the presence of hexokinases which utilize glucose, fructose and-or mannose as a substrate, four kinases could be distinguished by their order of elution during chromatography on diethylaminoethyl (DEAE)-cellulose: (i) a hexokinase I with a specificity for fructose, glucose, and mannose, (ii) a fructokinase I with a specificity for fructose, (iii) a hexokinase II with a specificity for glucose, fructose and mannose, and (iv) a fructokinase II with a specificity for fructose. Hexokinases I and II had high apparent Km values for fructose (8 and 15 mM, respectively) and medium or low apparent Km values for glucose (150 and 18 μM, respectively) and mannose (18 and 15 μM, respectively). Maximal velocities were highest with fructose, medium with glucose and lowest with mannose. That hexokinases I and II used several sugars as substrate was concluded (i) from their identical elution profiles during enzyme separation and (ii) because their activities with two or three sugars at a time was always lower than the sum of activities with one substrate, indicating competition of the sugars for the reaction with the enzymes. Fructokinases I and II were very specific for fructose (85 and 140 μM, respectively) and had only little, if any, activity with glucose or mannose. All kinases showed varying degrees of activity with nucleoside triphosphates other than ATP. In the presence of all three sugars, hexokinases I and II were considerably more active with ATP than with uridine-, cytidine-, and guanosine 5'-triphosphate (UTP, CTP, GTP) except that, in the presence of glucose, hexokinase I was almost as active with UTP as with ATP. In the presence of fructose, fructokinase I exhibited highest activity with GTP and a gradually decreasing level of activity with CTP, UTP, and ATP. The activities in the presence of the other two sugars were highest with ATP. Fructokinase II was most active with ATP and fructose and progressively less active with GTP, UTP, and CTP. Cell fractionation by isopycnic density-gradient centrifugation or differential centrifugation indicated that fructokinase II was associated with chloroplasts, hexokinase II with mitochondria, and the other two kinases with the non-particulate cell fraction. In green leaves of pea (Pisum sativum L.), only a hexokinase (II) and fructokinase (II) were present. Corn (Zea mays L.) leaves exhibited only very low hexokinase activity. Dedicated to Prof. Dr. Hans Mohr on the occasion of his 60th birthday  相似文献   

9.
Two soluble hexokinases and a particulate hexokinase have been separated and partially purified from spinach leaves. One of the soluble hexokinases showed a high affinity for glucose (Km = 63 μM) which was far greater than that for fructose (Km = 9.1 mM). However, with saturating fructose the activity was twice that with saturating glucose. The particulate hexokinase showed kinetic properties similar to those of this soluble hexokinase. The second soluble hexokinase was distinct in that it was much more active with fructose than with glucose at all concentrations tested, although the Km values for these hexoses (210 μM and 71 μM respectively) were similar. The activity of this hexokinase was stimulated by the monovalent cations K+ and NH4+.  相似文献   

10.
An hexokinase (EC 2.7.1.1) and a glucokinase (EC 2.7.1.2) from the red yeast Rhodotorula glutinis are described. Both enzymes have been separated and some of their properties studied. The two enzymes share many properties, the Kmfor glucose is 0.1 mm for both enzymes and the Km values for ATP are 0.5 mm and 0.6 mm respectively for hexokinase and glucokinase. The hexokinase shows a Km of 2 mm for fructose and 0.1 mm for mannose; the glucokinase has a Km for mannose of 0.2 mm. Both enzymes are constitutive, show competitive inhibition by N-acetylglucosamine and xylose, have weak affinity for glucosamine and exhibit a broad pH optimum. The molecular weights determined by gel filtration are 110,000 for glucokinase and 96,000 for hexokinase. The maximal activity of both hexose kinases nearly accounts for glucose utilization by Rh. glutinis.  相似文献   

11.
The novel sucrose derivative 1′-fluorosucrose (α-d-glucopyranosyl-β- d-1-deoxy-1-fluorofructofuranoside) was synthesized in order to help define mechanisms of sucrose entry into plant cells. Replacement of the 1′-hydroxyl by fluorine very greatly reduces invertase hydrolysis of the derivative (hydrolysis at 10 millimolar 1′-fluorosucrose is less than 2% that of sucrose) but does not reduce recognition, binding, or transport of 1′-fluorosucrose by a sucrose carrier. Transport characteristics of 1′-fluorosucrose were studied in three different tissues. The derivative is transported by the sucrose carrier in the plasmalemma of developing soybean cotyledon protoplasts with a higher affinity than sucrose (Km 1′-fluorosucrose 0.9 millimolar, Km sucrose 2.0 millimolar). 1′-Fluorosucrose is a competitive inhibitor of sucrose uptake with an apparent Ki also of 0.9 millimolar, while the Ki of sucrose competition of 1′-fluorosucrose uptake was 2.0 millimolar. Thus, both sugars are recognized at the same binding site in the plasmalemma. Both sucrose and 1′-fluorosucrose show very similar patterns of phloem translocation from an abraded leaf surface through the petiole indicating that recognition of 1′-fluorosucrose by sucrose carriers involved in phloem loading is likely as well.  相似文献   

12.
A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-β-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-β-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.  相似文献   

13.
The breakdown of sucrose to feed both hexoses into glycolytic carbon flow can occur by the sucrose synthase pathway. This uridine diphosphate (UDP) and pyrophosphate (PPi)-dependent pathway was biochemically characterized using soluble extracts from several plants. The sucrolysis process required the simultaneous presence of sucrose, UDP, and PPi with their respective Km values being about 40 millimolar, 23 micromolar, and 29 micromolar. UDP was the only active nucleotide diphosphate. Slightly alkaline pH optima were observed for sucrose breakdown either to glucose 1-phosphate or to triose phosphate. Sucrolysis incrased with increasing temperature to near 50°C and then a sharp drop occurred between 55 and 60°C. The breakdown of sucrose to triose-P was activated by fructose 2,6-P2 which had a Km value near 0.2 micromolar. The cytoplasmic phosphofructokinase and fructokinase in plants were fairly nonselective for nucleotide triphosphates (NTP) but glucokinase definitely favored ATP. A predicted stoichiometric relationship of unity for UDP and PPi was measured when one also measured competing UDPase and pyrophosphatase activity. The cycling of uridylates, UDP to UTP to UDP, was demonstrated both with phosphofructokinase and with fructokinase. Enzyme activity measurements indicated that the sucrose synthase pathway has a major role in plant sucrose sink tissues. In the cytoplasmic sucrose synthase breakdown pathway, a role for the PPi-phosphofructokinase was to produce PPi while a role for the NTP-phosphofructokinase and for the fructokinase was to produce UDP.  相似文献   

14.
Ketose reductase activity in developing maize endosperm   总被引:5,自引:5,他引:0  
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance liquid chromatography confirmed that the enzyme-catalyzed reaction was freely reversible. In maize endosperm, 15 days after pollination, ketose reductase activity was of the same order of magnitude as sucrose synthase activity, which produces fructose during sucrose degradation. Other enzymes of hexose metabolism detected in maize endosperm were present in activities of only 1 to 3% of the sucrose synthase activity. CaCl2, MgCl2, and MnCl2 stimulated ketose reductase activity 7-, 6-, and 2-fold, respectively, but had little effect on NAD-dependent polyol dehydrogenation (the reverse reaction). The pH optimums for ketose reductase and polyol dehydrogenase reactions were 6.0 and 9.0, respectively. Km values were 136 millimolar fructose and 8.4 millimolar sorbitol. The molecular mass of ketose reductase was estimated to be 78 kilodaltons by gel filtration. It is postulated that ketose reductase may function to metabolize some of the fructose produced during sucrose degradation in maize endosperm, but the metabolic fate of sorbitol produced by this reaction is not known.  相似文献   

15.
Wu MX  Smyth DA  Black CC 《Plant physiology》1983,73(1):188-191
The activity of pyrophosphate: d-fructose-6-phosphate-1-phosphotransferase (EC 2.7.1.90, PPi-PFK) in cotyledons and sprouts of germinating pea seeds (Pisum sativum cv Alaska or Green Arrow) increases rapidly during the first 2 to 3 days after imbibition and then declines to a lower activity. The reaction toward fructose 1,6-bisphosphate formation is activated greatly by fructose 2,6-bisphosphate (fru 2,6-P2); however, the sensitivity of the enzyme's activity to fru 2,6-P2 activation changes during germination.  相似文献   

16.
The distribution of pyrophosphate: fructose 6-phosphate phosphotransferase (PFP) and ATP: fructose-6-phosphate 1-phosphotransferase (PFK) was studied in germinating bean (Phaseolus vulgaris cv Top Crop) seeds. In the cotyledons the PFP activity was comparable with that of PFK. However, in the plumule and radicle plus hypocotyl, PFP activity exceeds that of PFK. Approximately 70 to 90%, depending on the stage of germination, of the total PFP and PFK activities were present in the cotyledons. Highest specific activity of both enzymes, however, occurred in the radicle plus hypocotyl (64-90 nanomoles·min·milligram protein). Fractionation studies indicate that 40% of the total PFK activity was associated with the plastids while PFP is apparently confined to the cytoplasm. The cytosolic isozyme of PFK exhibits hyperbolic kinetics with respect to fructose 6-P and ATP with Km values of 320 and 46 micromolar, respectively. PFP also exhibits hyperbolic kinetics both in the presence and absence of the activator fructose-2,6-P2. The activation is caused by lowering the Km for fructose 6-P from 18 to 1.1 millimolar and that for pyrophosphate (PPi) from 40 to 25 micromolar, respectively. Levels of fructose 2,6-P2 and PPi in the seeds are sufficient to activate PFP and thereby enable a glycolytic role for PFP during germination. However, the fructose 6-P content appears to be well below the Km of PFP for this compound and would therefore preferentially bind to the catalytic site of PFK, which has a lower Km for fructose 6-P. The ATP content appears to be at saturating levels for PFK.  相似文献   

17.
A study of three enzymes acting on glucose in the lens of different species   总被引:1,自引:1,他引:0  
1. The activities of three enzymes which act on glucose, namely hexokinase, aldose reductase and glucose dehydrogenase, were measured in extracts of eye lens from cow, calf, rabbit, rat and guinea pig, and in human cataractous lenses. 2. The Km (glucose) of these three enzymes in extracts of cow lens was found to be 0·12mm, 28mm and 690mm respectively. 3. The physiological importance of hexokinase, aldose reductase and glucose dehydrogenase in the lens of normal and diabetic animals is discussed.  相似文献   

18.
Uridine diphosphate (UDP)-glucose 4-epimerase (EC 5.1.3.2) has been purified over 1000-fold from extracts of wheat germ by MnCl2 treatment, (NH4)2SO4 fractionation, Sephadex column chromatography, and adsorption onto and elution from calcium phosphate gel. The enzyme has a pH optimum of 9.0. Km values are 0.1 mm for UDP-d-galactose and 0.2 mm for UDP-d-glucose. NAD is required for activity; Ka = 0.04 mm. NADH is an inhibitor strictly competitive with NAD; Ki = 2 μm. Wheat germ also contains UDP-l-arabinose 4-epimerase (EC 5.1.3.5) and thymidine diphosphate (TDP)-glucose 4-epimerase which are distinct from UDP-glucose 4-epimerase.  相似文献   

19.
The uptake of phenylalanine was studied with vacuole isolated from barley mesophyll protoplasts. The phenylalanine transport exhibited saturation kinetics with apparent Km-values of 1.2 to 1.4 millimolar for ATP- or PPi-driven uptake; Vmax app was 120 to 140 nanomoles Phe per milligram of chlorophyll per hour (1 milligram of chlorophyll corresponds to 5 × 106 vacuoles). Half-maximal transport rates driven with ATP or PPi were reached at 0.5 millimolar ATP or 0.25 millimolar PPi. ATP-driven transport showed a distinct pH optimum at 7.3 while PPi-driven transport reached maximum rates at pH 7.8. Direct measurement of the H+-translocating enzyme activities revealed Km app values of 0.45 millimolar for ATPase (EC 3.6.1.3) and 23 micromolar for pyrophosphatase (PPase) (EC 3.6.1.1). In contrast to the coupled amino acid transport, ATPase and PPase activities had relative broad pH optima between 7 to 8 for ATPase and 8 to 9 for PPase. ATPase as well as ATP-driven transport was markedly inhibited by nitrate while PPase and PPi-coupled transport was not affected. The addition of ionophores inhibited phenylalanine transport suggesting the destruction of the electrochemical proton potential difference Δ μH+ while the rate of ATP and PPi hydrolysis was stimulated. The uptake of other lipophilic amino acids like l-Trp, l-Leu, and l-Tyr was also stimulated by ATP. They seem to compete for the same carrier system. l-Ala, l-Val, d-Phe, and d-Leu did not influence phenylalanine transport suggesting a stereospecificity of the carrier system for l-amino acids having a relatively high hydrophobicity.  相似文献   

20.
The incorporation of labelled amino sugars by Bacillus subtilis   总被引:1,自引:1,他引:0  
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号