首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Filaments about 6-7 nm in diameter were seen associated with germ cell intercellular bridges in detergent-permeabilized cells treated with tannic acid. Approximately 40-50 filaments were present subjacent to the bridge density. Filaments encircled the bridge channel in a manner similar to contractile ring actin filaments of dividing cells. NBD-phallacidin and myosin S-1 subfragments were employed to demonstrate that the filaments observed at intercellular bridges are actin. Intratesticular injection of a single dose of cytochalasin D, a specific inhibitor of actin filaments, caused certain intercellular bridges of spermatids to open within 3 hr after injection, leading to the production of symplasts. During bridge opening, remnants of bridge densities were gradually incorporated into the lateral aspect of the plasma membrane of the symplast. Thus actin, present in bridge structures, appeared to participate in maintaining certain intercellular bridges. A model of intercellular bridge structure is presented.  相似文献   

2.
In Drosophila oogenesis, the development of a mature oocyte depends on having properly developed ring canals that allow cytoplasm transport from the nurse cells to the oocyte. Ring canal assembly is a step-wise process that transforms an arrested cleavage furrow into a stable intercellular bridge by the addition of several proteins. Here we describe a new gene we named cheerio that provides a critical function for ring canal assembly. Mutants in cheerio fail to localize ring canal inner rim proteins including filamentous actin, the ring canal-associated products from the hu-li tai shao (hts) gene, and kelch. Since hts and kelch are present but unlocalized in cheerio mutant cells, cheerio is likely to function upstream from each of them. Examination of mutants in cheerio places it in the pathway of ring canal assembly between cleavage furrow arrest and localization of hts and actin filaments. Furthermore, this mutant reveals that the inner rim cytoskeleton is required for expansion of the ring canal opening and for plasma membrane stabilization.  相似文献   

3.
Mammalian spermatogenesis involves drastic morphological changes leading to the development of the mature sperm. Sperm development includes formation of the acrosome and flagellum, translocation of nucleus-acrosome to the cell surface, and condensation and elongation of the nucleus. In addition, spermatogenic cell progenies differentiate as cohorts of units interconnected by intercellular bridges. Little is known about the structural components involved in the establishment of conjoined spermatogenic cells and the mechanism of nuclear shaping of the male gamete. We identified two isoforms of delta-tubulin and found that the long isoform is predominantly expressed in testis, while the short isoform is expressed in all tissues examined. We also found that delta-tubulin forms intercellular bridges conjoining sister spermatogenic cells. In addition, delta-tubulin is a component of the perinuclear ring of the manchette, which acts on translocation and elongation of the nucleus. Furthermore, small rings clearly distinct from the intercellular bridges, which might mature to perinuclear ring of the manchette in later stages of spermatogenesis, were detected on the cell surface of round spermatids. These results suggest that delta-tubulin is a component of two types of ring, the intercellular bridges and the perinuclear rings, which may be involved in morphological changes of spermatid to mature sperm.  相似文献   

4.
The 2 ovaries of Nemoura sp. (Plecoptera : Nemouridae) are comb-like and house about 60–70 ovarioles each. By ultrathin serial sections through a whole ovariole of a last-larval instar, we gathered information on its ultrastructure and 3-dimensional architecture. The germarial region contains several clusters of interconnected oogonia or oocytes. The intercellular bridges (ring canals) are filled with fusomes. Most of the fusomes assemble to polyfusomes and some of the intercellular bridges move together and their cells assemble to rosettes. Results indicate that existence of polyfusomes is not sufficient for rosette formation. The oogonia or oocytes of each cluster develop synchronously. Oocytes detach from clusters next to intercellular bridges. A transdetermination of oogonia to nurse cells does not occur. Thus, the stone flies remain true panoists.  相似文献   

5.
This study describes intercellular bridges in the ovaries of neonatal gerbils. Electron microscopy has revealed the presence of true intercellular bridges, connecting oogonia or oocytes, in ovaries of newborn gerbils. The cytoplasm of the intercellular channels is similar to that of the connected cells, with mitochondria, smooth and rough endoplasmic reticulum, and free ribosomes present. Lysosomes are also occasionally present in the intercellular bridges and they may be involved in early waves of oocyte atresia. An electron-dense substance, 350-500 A thick, is located immediately beneath the unit membrane of the intercellular bridges. Accumulation of electron-dense material increases the thickness of the walls of the intercellular bridges, supporting and maintaining the patency of the channels. It is suggested that the intercellular channels probably allow the interchange of nutrients, organelles, and possibly regulatory materials as well.  相似文献   

6.
A fine structural analysis of fetal mouse ovaries reveals the presence of intercellular bridges between developing oocytes. These bridges, which connect two or more oocytes, are most frequently seen prior to the dictyate stage of meiotic prophase. The intercellular connections are limited by a tri-laminar membrane which is continuous with the oocyte plasmalemma. A characteristic feature of all bridges is the presence of an electron-dense material on the cytoplasmic side of the limiting membrane. Since this dense material is a constant and conspicuous component of the entire bridge, identification of these connections is possible in all planes of section. In cross section, the bridges are usually cylindrical, while in longitudinal section, a variety of configurations are observed. Oocytes connected by intercellular bridges exhibit a highly developed Golgi complex which is frequently localized in the region of the cytoplasmic continuities. Vesicular elements, apparently derived from the Golgi, are routinely observed within the boundaries of the bridges. Other cytoplasmic organelles, including rough and smooth endoplasmic reticulum, free ribosomes and mitochondria, are also seen in these bridges. The presence of these vesicles and organelles within intercellular bridges suggests that these connections may provide a means for transfer of organelles and other substances from one oocyte to another. It may be, therefore, that intercellular bridges are important for the nourishment and maturation of certain selected oocytes as well as for the synchronization of meiotic events.  相似文献   

7.
Stable intercellular bridges are a conserved feature of gametogenesis in multicellular animals observed more than 100 years ago, but their function was unknown. Many of the components necessary for this structure have been identified through the study of cytokinesis in Drosophila; however, mammalian intercellular bridges have distinct properties from those of insects. Mammalian germ cell intercellular bridges are composed of general cytokinesis components with additional germ cell-specific factors including TEX14. TEX14 is an inactive kinase essential for the maintenance of stable intercellular bridges in gametes of both sexes but whose loss specifically impairs male meiosis. TEX14 acts to impede the terminal steps of abscission by competing for essential component CEP55, blocking its interaction in nongerm cells with ALIX and TSG101. Additionally, TEX14-interacting protein RBM44, whose localization in stabile intercellular bridges is limited to pachytene and secondary spermatocytes, may participate in processes such as RNA transport but is nonessential to the maintenance of intercellular bridge stability.  相似文献   

8.
After their arrival in the fetal gonad, mammalian germ cells express E-cadherin and are found in large clusters, similar to germ cell cysts in Drosophila. In Drosophila, germ cells in cysts are connected by ring canals. Several molecular components of intercellular bridges in mammalian cells have been identified, including TEX14, a protein required for the stabilization of intercellular bridges, and several associated proteins that are components of the cytokinesis complex. This has led to the hypothesis that germ cell clusters in the mammalian gonad arise through incomplete cell divisions. We tested this hypothesis by generating chimeras between GFP-positive and GFP-negative mice. We show that germ cell clusters in the fetal gonad arise through aggregation as well as cell division. Intercellular bridges, however, are likely restricted to cells of the same genotype.  相似文献   

9.
Ring canals, also known as stable intercellular bridges, are derived from the contractile rings of incomplete cytokinesis (IC) in most organisms. Formation of ring canals is necessary to generate functional eggs and sperm in multiple organisms including insects, birds, mammals and various plants. How the constriction of a contractile ring is arrested and how an arrested contractile ring is transformed into a ring canal is unknown. We describe here the function of the Drosophila melanogaster myosin binding subunit of myosin phosphatase (DMYPT) in both processes. We have found that DMYPT is highly enriched in the cytoplasm of cells undergoing IC during oogenesis. DMYPT mutations in germ cells, but not in somatic follicle cells, resulted in over-constriction of contractile rings and ring canals. This leads to formation of small ring canals and mis-regulation of centriole migration during female germline cyst formation. Our results suggest that there may be two parallel mechanisms to prevent the contractile rings from being completely closed, physical resistance and inhibition of myosin II activity via DMYPT.  相似文献   

10.
Stable cytoplasmic bridges (or ring canals) connecting the clone of spermatids are assumed to facilitate the sharing of haploid gene products and synchronous development of the cells. We have visualized these cytoplasmic bridges under phase-contrast optics and recorded the sharing of cytoplasmic material between the spermatids by a digital time-lapse imaging system ex vivo. A multitude of small (ca. 0.5 microm) granules were seen to move continuously over the bridges, but only 28% of those entering the bridge were actually transported into other cell. The average speed of the granules decreased significantly during the passage. Immunocytochemistry revealed that some of the shared granules contained haploid cell-specific gene product TRA54. We also demonstrate the novel function for the Golgi complex in acrosome system formation by showing that TRA54 is processed in Golgi complex and is transported into acrosome system of neighboring spermatid. In addition, we propose an intercellular transport function for the male germ cell-specific organelle chromatoid body. This mRNA containing organelle, ca. 1.8 microm in diameter, was demonstrated to go over the cytoplasmic bridge from one spermatid to another. Microtubule inhibitors prevented all organelle movements through the bridges and caused a disintegration of the chromatoid body. This is the first direct demonstration of an organelle traffic through cytoplasmic bridges in mammalian spermatogenesis. Golgi-derived haploid gene products are shared between spermatids, and an active involvement of the chromatoid body in intercellular material transport between round spermatids is proposed.  相似文献   

11.
Recent work shows that two groups of keratins are expressed during mammalian spermatogenesis. One group, belonging to the classic epidermis-type keratins, is present in spermatogonia, spermatocytes, and spermatids. A member of this group, Sak57, a keratin 5 homologue, has been shown to co-align with microtubules and provide a scaffolding shell while also strengthening intercellular cytoplasmic bridges conjoining members of spermatogonial and spermatocyte cohorts. The other, keratin 9, is a component of the perinuclear ring of the manchette, a microtubular structure developed during the elongation and condensation of the spermatid nucleus. The second group, the outer dense fiber (Odf) proteins, is expressed preferentially during mammalian spermiogenesis. The family of Odf proteins-Odf1, Odf2, and Odf3-includes an expanding group of proteins co-assembled along the axoneme during the development of the sperm tail. Investigations on the assembly of epidermis-type and Odf sperm tail-targeted keratins are now focused on a group of chaperone-like Odf-binding molecules, designated Spags. Spags appear to drive Odfs to a precise destination. A daunting task is to determine how members of the family of keratins get the signal to produce linear scaffolds in specific spermatogenic cell populations and transport keratins to microtubule-containing structures such as the manchette and axoneme.  相似文献   

12.
Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14(+/-) spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term.  相似文献   

13.
Segments and subsegments are the smallest unit of synchrony thus far described within longitudinal sections of seminiferous tubules. It is known that cells in a clone joined by intercellular bridges are at the same phase of development and are also thought to be units of synchrony. This study was designed to determine if it is possible that the synchrony seen in cells joined by intercellular bridges is the same as that cataloged along the long axis of the seminiferous tubule. In the present study, the maximum number of rat spermatids joined by intercellular bridges (a clone) was obtained. It was hypothesized that if the clone size were larger than the smallest known units of synchrony (segments or subsegments) in the long axis of the seminiferous tubule, then intercellular bridges would most likely govern the synchronous development of segments or subsegments (or finer subdivisions thereof). If the clone size is smaller than the number of cells present in a segment or subsegment, then other factors must govern synchrony in the longitudinal aspect of the tubule. In the determination of spermatid clone size, rat testes were injected with cytochalasin D which opens intercellular bridges of a spermatid clone to produce large symplasts. The number of nuclei in the symplasts was determined from serially sectioned tissue, by drawing nuclei with a camera-lucida, and by counting nuclei. After extensive examination of tubules, the number of spermatids found in the suspected five largest clones observed was determined to be 650, 607, 338, 240, and 177.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Iwamori T  Lin YN  Ma L  Iwamori N  Matzuk MM 《PloS one》2011,6(2):e17066
Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44) as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14.  相似文献   

15.
We detected cell-to-cell communication via intercellular bridges in DU 145 human prostate cancer cells by fluorescence microscopy. Since DU 145 cells have deficient gap junctions, intercellular bridges may have a prominent role in the transfer of chemical signals between these cells. In culture, DU 145 cells are contiguous over several cell diameters through filopodial extensions, and directly communicate with adjacent cells across intercellular bridges. These structures range from 100 nm to 5 microm in diameter, and from a few microns to at least 50-100 microm in length. Time-lapse imagery revealed that (1) filopodia rapidly move at a rate of microns per minute to contact neighboring cells and (2) intercellular bridges are conduits for transport of membrane vesicles (1-3 microm in diameter) between adjacent cells. Immunofluorescence detected alpha-tubulin in intercellular bridges and filopodia, indicative of microtubule bundles, greater than a micron in diameter. The functional meaning, interrelationship of these membrane extensions are discussed, along with the significance of these findings for other culture systems such as stem cells. Potential applications of this work include the development of anti-cancer therapies that target intercellular communication and controlling formation of cancer spheroids for drug testing.  相似文献   

16.
《Biophysical journal》2022,121(16):3162-3171
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model’s equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated—one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.  相似文献   

17.
Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells - ring canals - cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is also made.  相似文献   

18.
19.
Roles of cell-to-cell communication in development   总被引:3,自引:0,他引:3  
Possible roles of cell-to-cell communication mediated by intercellular bridges and gap junctions in development of the female gamete and embryo are discussed. Synchronization of cell cycle events is presumably a role for intercellular bridges between germ cells. The follicle of the Cecropia moth reveals that an electrical polarity exists between nurse cells and oocytes which are connected by intercellular bridges and this polarity may generate differences that result in differentiation of the oogonia to become either the oocyte or nurse cells. Gap junction-mediated transfer of cyclic AMP, made in response to gonadotropin stimulation, between granulosa cells is discussed as a mechanism that allows cells within a tissue to respond to an external stimulus even though all cells in that tissue may not be exposed to the stimulus. A nutritional role for heterologous cell communication between follicle cells and the oocyte in oocyte growth is presented as an example of how gap junction-mediated communication can allow one cell type to influence the behavior of another cell type. During development, a restriction in communication between differentiating cells is frequently observed. Examples of this phenomenon in a mammal and an insect are presented.  相似文献   

20.
A previous electron microscopic study of the cat testis revealed that spermatids derived from the same spermatogonium are joined together by intercellular bridges. The present paper records the observation of similar connections between spermatocytes and between spermatids in Hydra, fruit-fly, opossum, pigeon, rat, hamster, guinea pig, rabbit, monkey, and man. In view of these findings, it is considered likely that a syncytial relationship within groups of developing male germ cells is of general occurrence and is probably responsible for their synchronous differentiation. When clusters of spermatids, freshly isolated from the germinal epithelium are observed by phase contrast microscopy, the constrictions between the cellular units of the syncytium disappear and the whole group coalesces into a spherical multinucleate mass. The significance of this observation in relation to the occurrence of abnormal spermatozoa in semen and the prevalence of multinucleate giant cells in pathological testes is discussed. In the ectoderm of Hydra, the clusters of cnidoblasts that arise from proliferation of interstitial cells are also connected by intercellular bridges. The development of nematocysts within these groups of conjoined cells is precisely synchronized. Both in the testis of vertebrates and the ectoderm of Hydra, a syncytium results from incomplete cytokinesis in the proliferation of relatively undifferentiated cells. The intercellular bridges between daughter cells are formed when the cleavage furrow encounters the spindle remnant and is arrested by it. The subsequent dissolution of the spindle filaments establishes free communication between the cells. The discovery of intercellular bridges in the two unrelated tissues discussed here suggests that a similar syncytial relationship may be found elsewhere in nature where groups of cells of common origin differentiate synchronously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号