首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. The life cycles of 5 autogamous strains of Euplotes minuta are reported. Interautogamic intervals (measured as number of fissions) are quite variable among clones belonging to the same strain, while their variability is much reduced (15 fissions) among sublines of the same clone. By selecting the clone with the shortest immature period to start successive autogamous generations, it has been found that all clones undergo autogamy almost synchronously and have a very short period of immaturity at the 5th autogamous generation. Both conjugation and autogamy, however, are consistently followed by immature periods in all autogamous strains examined. Mating capacity as well as competence for autogamy are reached almost simultaneously in all clones of the strains studied with the exception of about 1/3 of the A-31 clones in which autogamy occurs significantly earlier than conjugation. The results are discussed from the genetic point of view and in relation to the sexual mechanisms operating in nature within different populations of the species.  相似文献   

2.
In Paramecium, age is defined as the number of mitotic divisions which have elapsed since the previous cross-fertilization (conjugation) or self-fertilization (autogamy). As the mitotic interval between fertilizations increases, the percentage of nonviable progeny clones increases. In the current study, resolution of conflicting previous reports on the pattern of increase of death and reduced viability in progeny from aging parent cells is found. Some exautogamous clones exhibit a high mortality at young clonal ages, others show no mortality throughout their life span, but most (73%) show an abrupt increase in the percent death and reduced viability in progeny from cells 50–80 fissions old.

Ultraviolet-irradiation-induced micronuclear mutations, repairable by photoreactivation, increased with increased clonal age when monitored by percent death and reduced viability of exautogamous progeny of irradiated cells. Loss of dark repair is considered a contributor to the increased expression of micronuclear mutations with increased clonal age.

  相似文献   

3.
We compared breeding systems, inbreeding depression, and pollination limitation between two populations of Kalmia latifolia in Virginia and Rhode Island. Plants were autogamous in Virginia but not Rhode Island. Although autogamy with selling is hypothesized to reduce levels of inbreeding depression, both populations showed similarly high inbreeding depression manifested as reduced fruit set. Autogamy may be uncorrelated with selling rate because autogamy is not obligate and because geitonogamy is likely. Autogamy in the Virginia population seems most likely to have evolved for reproductive assurance under competition for pollinator service. Fruit set was pollination limited in the Virginia population apparently because bumblebee pollinators were more attracted to a coflowering species, Vaccinium erythrocarpum.  相似文献   

4.
SYNOPSIS Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity to natural ionizing radiations—the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. the role of the catalase in the mechanism of natural irradiation effect is discussed.  相似文献   

5.
An allele of the behavioural mutant pawn-B96 has been reported as a typical recessive gene but was found to show a peculiar inheritance. When the F2 progeny from crosses between the wild-type and pwB96 were obtained by autogamy, the 1:1 phenotypic segregation ratio was observed as expected. However, two-thirds of the wild-type progeny in the F2 were thought to be heterozygotes because they became mixed progeny of wild-type and pawn clones in successive autogamies. Four marker genes showed the expected segregation ratio and stable phenotypes in these crossings. This result and the results of crossings using segregants from the above crosses indicated that parental pwB96 is a tetrasomy of the chromosome carrying the pwB gene. To determine the cause of chromosomal duplication in the mutant, the stability of the chromosome carrying the pwB locus was examined by genetic analyses. The disomy of both pwB and wild-type and the tetrasomy of pwB showed genotypes that were relatively stable during several autogamous generations. However, in clones initially pure for the tetrasomy of wild-type, disomic cells appeared within a few autogamous generations. The difference between the stabilities of the tetrasomy of pwB96 and that of the wild-type might be due partly to differences between the growth rate of tetrasomy and disomy in pwB96 and the wild-type, but mostly the result of an unknown contribution of the chromosome carrying the pwB96 allele to the tetrasomic composition.  相似文献   

6.
Macronuclear karyoplasm was transplanted from pre-autogamous donor cells (clonal age, 22 fissions) into the macronucleus of young recipient cells (2 fissions after autogamy occurred) by means of microinjection. A reciprocal experiment was carried out by injecting karyoplasm from young clonal age donors into pre-autogamous recipients. In the case of karyoplasm transfer from pre-autogamous donors to young recipients, autogamy occurred early in 67% of injected cells, whereas reciprocal injections had no influence on the onset of autogamy, and all of the injected cells underwent autogamy. Such results indicate a distinct role of pre-autogamous cells of macronucleus in the induction of autogamy.  相似文献   

7.
 Repeatabilities of progeny means, and the univariate cross prediction method were used to study the effectiveness of progeny selection for agronomically important characters in early generations of potato (Solanum tuberosum L.) breeding. The study was based on 90 progenies (72 crosses+18 selfs) evaluated for three successive generations, i.e. seedling, first clonal and second clonal generations. Repeatabilities of progeny means were measured as correlation coefficients between generations. In the univariate cross prediction method, progeny means and within-progeny standard deviations were used to calculate the proportions of clones exceeding the target values, and correlation coefficients between generations for predicted and observed proportions of clones, were calculated. Population means varied from generation to generation. Correlation coefficients between generations for progeny means for most of the characters were significant, but moderate. These were higher than the correlation coefficients between predicted and observed proportions of clones exceeding the target values. The possibility of using progeny means as a selection parameter to reduce the number of genotypes to be examined in later stages by rejecting the poor crosses in seedling generation is discussed. Received: 8 January 1997/Accepted: 28 February 1997  相似文献   

8.
? Premise of the study: Small, autogamous flowers have evolved repeatedly in the plant kingdom. While much attention has focused on the mechanisms that promote the shift to autogamy, there is still a paucity of information on the factors that underlie the reduction of flower size so prevalent in selfing lineages. In this study of Crepis tectorum, I examine the role of inbreeding, acting alone or together with selection, in promoting evolutionary reduction of flower size. ? Methods: Experimental crosses were performed to produce progeny populations that differed in inbreeding and (or) selection history. Progenies were grown in two different environments and scored for flower size and other characters. ? Key results: Inbreeding depressed flower and fruit size, but also caused changes in flowering time and the number of heads produced. Despite some inconsistencies in the results for the last progeny generation, the decline in flower size was persistent over generations, consistent across environments, and similar in magnitude to the effects of selection for small flower size and the floral reduction inferred to have taken place during the shift toward autogamy within the study species. The floral size reduction was largely independent of changes in overall vigor, and there was considerable adaptive potential in flower size (measured by sib analyses and parent-offspring comparisons) after inbreeding. ? Conclusions: The results of this study indicate that inbreeding can promote evolutionary reduction of flower size and highlight the close, persistent association between flower and fruit size in the study species.  相似文献   

9.
Autogamy is a process of meiosis and fertilization which takes place in unpaired Paramecium cells, and which is triggered by starvation. This study examines the consequences of nutritional down-shift at various points within the cell cycle on the occurrence of autogamy. It shows that cells become committed to autogamy in a two-step process. An initial point of commitment to autogamy occurs about 100 min prior to the median time of cell division (cell cycle duration, 330 min). Cells which have become committed to autogamy initiate meiosis following the next fission, others complete another vegetative cell cycle before undergoing meiosis. Treatments that perturb the cell cycle and displace the point of commitment to division also displace the point of initial commitment to autogamy to the same extent.The initial commitment to autogamy can be reversed by refeeding. The second, final, point of commitment to autogamy occurs about 30 min after the fission, immediately prior to initiation of meiosis, and coincides with the beginning of meiosis. If cells are refed at this point, or at later stages, autogamy continues.Autogamy is not well synchronized either in naturally starved cultures or in those subjected to abrupt nutritional down-shift. This is a consequence of the cell cycle stage dependence of entry into autogamy. Autogamy occurs synchronously in samples of dividers selected from asynchronous cultures 2 or more hours after nutritional down-shift. The timing of the events of conjugation and autogamy coincide when the pre-autogamous fission is aligned temporally with the initial contact of mating cells.  相似文献   

10.
Variations in the tendency to diapause were investigated in 5 successive generations of 6 parthenogenetic clones of Trichogramma telengai Sor. reared under constant laboratory conditions (the temperature of 20°C and the day length of 18 h). The tendency to diapause was estimated by the proportion of the progeny which diapaused at temperatures of 13, 14 and 15°C. Although the variations in the tendency to diapause in successive generations of different clones were positively correlated, the dynamics of the proportion of diapausing progeny in one of the studied clones was significantly different from that in the other clones reared under the same conditions. Moreover, the differences among subclones originated from the same female were also revealed. Analysis of the results suggests that the interclonal variations in the proportion of diapausing progeny were at least partly caused by endogenous factors. The differences between clones can arise during the development of one generation but can also damp very fast or, at least, they are not accumulated over generations. These variations are probably based on the same epigenetic mechanisms that form the basis of the maternal effect on the progeny diapause in Trichogramma species.  相似文献   

11.
Commitment to autogamy blocks mating reactivity in Paramecium. Cells which had previously developed mating reactivity, lost reactivity 30-90 min prior to the preautogamous fission. Mating reactivity develops at a standard level of starvation when cells are allowed to exhaust their food supply naturally. In abruptly starved cultures, mating reactivity appears 3.3 h after downshift. Autogamy is also triggered by starvation. The level of starvation required for initiation of autogamy decreases progressively as cells age. When the autogamy starvation threshold drops to such a low level that all cells become committed to autogamy before any of them develop mating reactivity, reactivity does not occur under natural starvation conditions and the period of maturity for conjugation has come to an end. There is no absolute immature period for autogamy.  相似文献   

12.
The reproductive biology ofW. berteroi, W. fernandeziana, and a putative hybrid betweenW. fernandeziana andW. grahamiae, endemic to Robinson Crusoe Island (Juan Fernández archipelago, Chile) was studied. Flowers are hermaphroditic, protandrous, offer nectar, and exhibit secondary pollen presentation involving pollen collecting hairs on the style. These features imply allogamy and biotic pollination. However, male and female phases overlap and no effective pollinators were observed. Experimental data indicate these taxa are self-compatible and facultatively autogamous, a conclusion also suggested by the pollen/ovule ratios. Selfing is accomplished when the stigmatic lobes reflex and touch the style, except forW. berteroi where they do not reflex completely. Autogamy is accomplished in the latter when pollen grains deposited on the inner surface of the corolla throat by the pollen brush are gathered by stigmatic lobes when shaken by wind. The degree of autogamy, and perhaps self-compatibility, seems to be inconstant, as implied by the variable natural seed set (overall range 21–188 seeds per fruit). A mixed mating system — primarily outcrossing/entomophilous, but also autogamous — must have been present in the continental ancestors of these taxa. Autogamy promoting self-fertilization is important now — on an island with scarce pollinators — and in the past — when the first founders arrived.  相似文献   

13.
M A Fieldes 《Génome》1994,37(1):1-11
Seed of flax (Linum usitatissimum) were treated for short durations with 5-azacytidine and the direct and heritable effects of the treatments on plant growth and development in general and, more specifically, on the contrasting phenotypes of Durrant's large and small genotrophs were examined. 5-Azacytidine induced a reduction in the height of the plants grown from treated seed. Twenty-two percent of the first generation progeny of these plants also had short phenotypes and, in most cases, the short phenotype was stably and uniformly inherited by the second generation progeny of the short, first generation plants. Treatment also induced a marked decrease in the flowering age in a few of the first generation plants that was also transmitted to their second generation progenies. The effects seen in the progeny generations suggest that most, if not all, of the heritable changes induced by the treatment are epigenetic. Several differences were seen between the large and small genotrophs, which indicate that the genome of the small genotroph is less susceptible, than the genome of the large genotroph, to 5-azacytidine induced heritable alterations.  相似文献   

14.
A search was undertaken for naturally occurring genetic markers for use in clonal aging studies of Paramecium tetraurelia. Clonal age is defined as the number of cell divisions since the last sexual process. Autogamy (self-fertilization) is a sexual process which can occur in aging lines, resulting in homozygosity and initiation of the next generation. Such illicit autogamies must be detected and eliminated from the aged clone. With codominant alleles, heterozygous aging lines can be established which will express a phenotype distinguishable from that of either parental type and autogamy can then be monitored by the appearance of either segregant homozygous phenotype. However, very few codominant alleles are available in this species. Electrophoretic mobilities of malic dehydrogenase (MDH) were assayed in 11 stocks of Paramecium tetraurelia by polyacrylamide gel electrophoresis. Nine stocks showed a singlebanded stock 51 type, while stock 174 and stock 29 each exhibited unique mobility. Crosses between stock 51 and the deviant stocks revealed distinct three-banded patterns indicative of heterozygosity of the F1 generation. In the autogamous F2 generation, 1:1 segregation of the parental types were recovered. The pattern of inheritance is consistent with codominant alleles and Mendelian inheritance. These naturally occurring biochemical markers are stable with increasing clonal age and are therefore useful genetic markers for studies of cellular aging.This work was supported by NSF Grant PCM 7704315.  相似文献   

15.
A significant fraction of the Tetrahymena clones isolated from natural habitats self (mating occurs within a clone). Early attempts to study such clones failed because stable subclones were rarely, if ever, observed, and isolated pairs all died. Isozyme analysis revealed that these wild selfers were a diverse group; some were very similar to T. australis, a species with synclonal mating type determination and to T. elliotti, shown recently to have a karyonidal mating type system. One originally stable clone of T. australis included some selfing clones after a few years in our laboratory. Other clones manifested unique zymograms. Subclones isolated from 18 selfer strains were heterogeneous. All subclones of several selfers mated massively at each transfer through 100 fissions. Selfing among subclones of other selfers was highly variable or not observed. Although 77% of the pairs isolated died, and 9% of the pair cultures selfed, 15 selfers yielded some viable nonselfing "immature" progeny. Additional immature progeny were obtained by isolating pairs from macronuclear retention synclones. Although some "immature" progeny eventually selfed, most remained stable. Giemsa staining revealed macronuclear anlagen in nearly all mating pairs and some anomalies. Crosses among the F1 progeny clones of the T. elliotti selfers yield viability data comparable to those from crosses among normal strains. Perhaps perpetual selfing is a mechanism of getting rid of deleterious combinations of genes and uncovering better combinations in homozygous state by playing genetic roulette.  相似文献   

16.
The clone of the ciliated protozoan Paramecium caudatum has the immaturity period of about 60 fissions and the lifespan of about 600 fissions. These life cycle figures have been depicted through laboratory experiments that allow continuous cell divisions for hundreds, which never occur in nature. We here constructed the nature-mimicking model culture that alternated the log- and stationary phases to allow conjugation, and computer-simulated the age structure modifying parameters such as cell distributions to start the culture, fission rates, death rates, immaturity periods, probabilities of conjugation, proportions of transplantation and so on. The average and maximum ages in the culture after thousands of alternations were converged to 43±2 and 140±5 fissions, respectively, when parameters for the immaturity period and the maximum clonal lifespan were set at 60 and 600 fissions. This result explains why cells collected in nature are usually young and vigorous. The average and maximum ages proportionally prolonged as the immaturity period was prolonged, as reported true for species of the ciliate. These results indicate the validity of our simulation. The average and maximum ages remained unchanged when the initial condition for starting the culture was changed from two complementary mating-type cells to a population with a quadratic-function distribution, and when the fission rate at the log-phase and the death rate at the stationary phase were modified for older ages. The average and maximum ages changed slightly when either the conjugation rate or the proportion of transplantation was somewhat lowered. Although they changed considerably when such parameters as the immaturity period, conjugation rate and death rate were extremely modified, no clones with the age over 230 fissions appeared in any simulations. These results indicate the robustness of the model, which provides us with fresh insight into the structural system of the clonal lifespan of P. caudatum in nature.  相似文献   

17.
The circadian photoaccumulation rhythm of thirty strains of Paramecium bursaria collected at different places in Japan and China were measured with a microcomputer assisted data collection apparatus. Although most strains showed a period of 23-26 hours in LL, we found two strains of conspicuously different periods; a short period strain (UK1, 21.8 hr) and a long period strain (T316, 28.7 hr). F1 progeny from a cross between the short and the long period strains showed an intermediate period of about 24.7 hours (range 22.5-25.8 hr). The character was not distributed in a Mendelian ratio among the F1 progeny. We isolated a mutant (E2) with short period (21.8 hr) from the stock strain Kz1 by treatment with nitrosoguanidine (MNNG). The progeny of crosses between E2 and UK1, and between E2 and T316 exhibited the short period and the normal period phenotype respectively. Moreover, the progeny from a cross between E2 and a wild type strain (Sj2w) became sexually mature about 25 fissions after conjugation. This length of immaturity is much shorter than that of the progeny from wild type strains (about 50 fissions). This early maturation character was inherited to progeny in a Mendelian ratio. Homozygotes for the early maturation allele (EM2) exhibited mating ability about 15 fissions after conjugation. These data suggest that there is a correlation between the period length of the circadian rhythm and the length of immaturity after conjugation in Paramecium bursaria.  相似文献   

18.
Koizumi S  Kobayashi S 《Genetics》1984,107(3):367-373
The unique feature of the "B system" of mating-type determination found in Paramecium tetraurelia is the existence of a cytoplasmic difference between odd (O) and even (E) cells created and maintained by the action of their macronuclei. Thus far, the presence of a determining factor that controls the differentiation of the developing zygotic macronucleus for O mating type has not been verified. Results of crosses between cells of differing clonal age and complementary mating type suggest that, for one to two fissions after autogamy, O cells produce some factor that determines the gametic nucleus (micronucleus) as mating type O. Direct evidence for the production of O-determining factor by the young O macronucleus was obtained by transplanting young O macronuclear karyoplasm (a part of the macronucleus) into E cells: 32-35% of E exautogamous clones transformed to O; transformation of E exautogamous clones to O reached as high as 72% by transfer of young O macronuclear karyoplasm from a conjugant, 3-4 hr after mixing. This indicates that O determinants produced by the O macronucleus can also act during the sensitive period of development of the new macronucleus. These O-determining factors may be produced or activated at the sexual stage and then decrease in activity in subsequent fissions after new macronuclear reorganization.  相似文献   

19.
Inheritance of extrachromosomal rDNA in Physarum polycephalum.   总被引:2,自引:1,他引:1       下载免费PDF全文
In the acellular slime mold Physarum polycephalum, the several hundred genes coding for rRNA are located on linear extrachromosomal DNA molecules of a discrete size, 60 kilobases. Each molecule contains two genes that are arranged in a palindromic fashion and separated by a central spacer region. We investigated how rDNA is inherited after meiosis. Two Physarum amoebal strains, each with an rDNA recognizable by its restriction endonuclease cleavage pattern, were mated, the resulting diploid plasmodium was induced to sporulate, and haploid progeny clones were isolated from the germinated spores. The type of rDNA in each was analyzed by blotting hybridization, with cloned rDNA sequences used as probes. This analysis showed that rDNA was inherited in an all-or-nothing fashion; that is, progeny clones contained one or the other parental rDNA type, but not both. However, the rDNA did not segregate in a simple Mendelian way; one rDNA type was inherited more frequently than the other. The same rDNA type was also in excess in the diploid plasmodium before meiosis, and the relative proportions of the two rDNAs changed after continued plasmodial growth. The proportion of the two rDNA types in the population of progeny clones reflected the proportion in the parent plasmodium before meoisis. The rDNAs in many of the progeny clones contained specific deletions of some of the inverted repeat sequences at the central palindromic symmetry axis. To explain the pattern of inheritance of Physarum rDNA, we postulate that a single copy of rDNA is inserted into each spore or is selectively replicated after meiosis.  相似文献   

20.
The role of the micronucleus in the age-dependent increase in mortality after conjugation in Paramecium has been investigated using micronuclear transplantation. The clone of Paramecium caudatum used for this study had a lifespan of about 750 fissions. In this clone, the fission rate began to decrease about 450 fissions after conjugation. Mortality after selfing conjugation also began to appear at about 450 fissions and gradually increased with clonal age. Cells at about 650 fissions showed 10–70% survival after selfing conjugation but when their micronuclei were transplanted into amicronucleate cells of about 450 fissions, the progeny survival increased to 70–90%. When micronuclei from cells 700–750 fissions old were transplanted into amicronucleate cells of 100–150 fissions, however, increase in progeny survival was very rare. The results indicate that micronuclei in cells up to the age of 650 fissions can function normally if the cytoplasmic environment is young.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号