首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Tropical island stream ecosystems continue to be threatened by increasing anthropogenic demands for freshwater, with many streams dammed or diverted. Stream flow amendments can have substantial effects on aquatic insect populations of tropical archipelagoes. In Hawaiian streams, an endemic Diptera community of the following genera dominates cascades and other torrential habitats: Telmatogeton Schiner (Chironomidae), Procanace Hendel (Canacidae), Scatella Robineau-Desvoidy (Ephydridae). Larval densities, standing stock biomass (SSB, as ash-free dry mass [AFDM]), and monthly secondary production of Telmatogeton and Procanace were measured during two summers of significantly different stream discharge in Iao Valley, Maui, Hawaii. Very few Scatella larvae were collected (<20 larvae for both years combined), so they were omitted from subsequent analyses. Stream discharge decreased approximately 40% from 1994 to 1995, providing a ‘natural test’ of the effects of reduced stream flow on these torrenticolous populations between two years. Combined Telmatogeton and Procanace SSB (total torrential community SSB) was 3176 and 1683 mg AFDM m−2 for 1994 and 1995, respectively, with Telmatogeton accounting for >95% in both years due to significantly larger body size and high density. The SSB of Telmatogeton significantly decreased from 3138 to 1622 mg AFDM m−2 from 1994 to 1995 but increased for Procanace (37.6–60.9 mg AFDM m−2, respectively). Total torrential community secondary production was 31% lower in 1994 (12,833 mg AFDM m−2 mo−1) compared to 1995 (8855 mg AFDM m−2 mo−1), reflecting the Telmatogeton proportion of total community production (99%); however, Procanace production increased by 40%. Monthly P/B ratios indicated that biomass turnover was generally high and increased for Telmatogeton from 1994 (3.8) to 1995 (5.1), whereas it remained lower and did not change between years for Procanace (1.7). A natural drought of the Iao Stream valley was associated with structural and functional changes in two endemic aquatic insects; these results are a conservative indication of permanent stream flow reductions from anthropogenic withdrawal (e.g., dams and diversions).  相似文献   

2.
Georg Wolfram 《Hydrobiologia》1996,318(1-3):103-115
From July 1990 to July 1991 the benthic community of the open water zone of Neusiedler See, one of the largest shallow lakes in central Europe, was studied with special reference to the chironomids. Only 16 spp. of chironomids inhabited the sediment of the open water zone. The numerically dominant species were Tanypus punctipennis, Procladius cf. choreus, Microchironomus tener and Cladotanytarsus gr. mancus. Most invertebrates showed a distinct horizontal distribution. Species richness and abundance were highest on muddy and organically rich substrates near the reed belt. Chironomid densities in this area reached 54,000 ind m–2 and biomass was 2.0 g dw m–2. The two tanypod species accounted for more than 90% of the standing stock of the macrozoobenthos near the reed belt. The sediment of the open lake and of the eastern part of Neusiedler See was composed of compact clay and sand as a result of the erosion of fine material due to strong waves and currents. Individual densities in these areas were much lower. Production of the numerically dominant species T. punctipennis was estimated using the increment-summation method, whereas production of the remaining species was estimated using an empirically derived multiple regression. Mean annual production of chironomids exceeded 6 g dw m–2 yr–1 near the reed belt, but it reached only 0.55 g dw m–2 yr–1 in the open lake. These values are rather low compared with other lakes and can be explained by unfavourable sediment conditions due to wave action and by physiological stress due to the water chemistry.  相似文献   

3.
Fluxes of oxygen, nitrogen and phosphorus were determined in two areas of the Sacca di Goro lagoon, at a site influenced by the farming of the mussel Mytilus galloprovincialis and a control site. Mussel farming induced intense biodeposition of organic matter to the underlying sediments, which stimulated sediment oxygen demand, and inorganic nitrogen and phosphorus regeneration rates compared to the nearby control station. Overall benthic fluxes (–11.4 ± 6.5 mmol O2 m−2 h−1; 1.59 ± 0.47 mmol NH4+ m−2 h−1 and 94 ± 42 μmol PO43− m−2 h−1) at the mussel farm are amongst the highest ever recorded for an aquaculture impacted area and question the belief that farming of filter-feeding bivalves has inherently lower impacts than finfish farming. In situ incubations of intact mussel ropes demonstrated that the mussel rope community was an enormous sink for oxygen and particulate organic matter, and an equally large source of dissolved inorganic nitrogen and phosphate to the water column. Overall, a one meter square area of␣mussel farm (mussel ropes and underlying sediment) was estimated to have an oxygen demand of 46.8 mmol m2 h−1 and to regenerate inorganic nitrogen and phosphorus at rates of 8.5 and 0.3 mmol m2 h−1, with the mussel ropes accounting for between 70 and more than 90% of the overall oxygen and nutrient fluxes. Even taking into account that within the farmed area of the Sacca di Goro lagoon, there are 15–20 m−2 of open water for each one covered with mussel ropes, the mussel ropes would account for a large and often dominant part of overall oxygen and nutrient fluxes. These results demonstrate that it is essential to take into account the activity of the cultivated organisms and their epiphytic community when assessing the impacts of shellfish farming. Overall, whilst grazing by the mussel rope community could act as a top-down control on the phytoplankton, most of the ingested organic matter is rapidly recycled to the water column as inorganic nutrients, which would be expected to stimulate phytoplankton growth. Consequently, the net effect of the mussel farming on phytoplankton dynamics, may be to increase phytoplankton turnover and overall production, rather than to limit phytoplankton biomass.  相似文献   

4.
A study of the vertical distribution of all instars of chironomid larvae was carried out in the littoral zone of a lake in southwest England over a period of 14 months. Samples were collected every month by using a 44 mm (i.d.) piston core sampler. Each core sample was sectioned at 1 cm intervals and preserved immediately after collection. The density of larvae in the study area varied from a low of 16,368 larvae m–2 in August 1989 to maximum values of 106,249 and 129,954 larvae m–2 in June 1989 and May 1990, respectively. During spring and early summer, first instar larvae comprised approximately half of the larval population. No significant differences were found in seasonal vertical distribution of the chironomid larvae. Over 85% of the larval population inhabited the top 6 cm of the sediment, with the first and second instar larvae of all taxa most abundant in the top 1 cm section.  相似文献   

5.
The seed banks of two temporarily open/closed estuaries in South Africa were quantified in this study. Charophyte öospores represented almost 72% of the sexual propagules in the sediment with a mean öospore density of 31,306 öospores m−2. This was followed by the seeds of the intertidal salt marsh plant Sarcocornia perennis (18%) (7929 seed m−2) and the submerged angiosperm Ruppia cirrhosa (7%) (2852 seeds m−2). The remaining 3% was made up of a mixture of species such as Salicornia meyeriana, Sporobolus virginicus, Stukenia pectinata, Bolboschoenus maritimus and terrestrial species. Although seed density did not differ significantly with depth, seeds still occurred at 20 cm depth providing a regeneration source in the event of sediment disturbance. Three salinity (0, 17 and 35 PSU) and moisture treatments (exposed, waterlogged and submerged) were applied to collected sediment to determine how fast species would germinate. S. perennis germinated after 3 d to a maximum of 82%. Submerged species began to germinate only after 18 d (Chara vulgaris and R. cirrhosa) and had low germination percentages of between 11 and 15% after 91 d. Results from this study indicate that in the event of unpredictable disturbance events such as water level fluctuations, large sediment seed reserves would ensure habitat persistence.  相似文献   

6.
The results of an investigation of the density and biomass of Gastrotricha in freshwater lakes and in small fertile and shallow water bodies in eastern Poland are presented. The density varied from 495.0 to 2600.0 thousand indiv. m–2 and was affected by water fertility much less than expected. The highest biomass value, 517.9 mg fresh weight m–2, was obtained for one of the fertile water bodies. For lakes, these values were from 200.0 mg m–2 in a dystrophic to 80.0 in an a-mesotrophic lake. In the latter the biomass decreased gradually from 319.8 mg fresh weight m–2 in littoral to 65.0 mg in the profundal zone.  相似文献   

7.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

8.
Coccolith fluxes were investigated by sediment trap studies in the West Caroline Basin, which is located in the equatorial western Pacific. The investigation was conducted from June 1991 to March 1992 at two water depths, 1592 and 3902 m, as part of the Northwest Pacific Carbon Cycle Study (NOPACCS) program. Two seasonal maxima of coccolith fluxes were observed during September–early October and late December–January. The average coccolith and coccosphere fluxes at the depth of the shallow trap were 1800×106 coccoliths m−2 day−1 and 1.9×106 coccospheres m−2 day−1, respectively. The flux of coccoliths followed the same trend as the total flux, and was closely correlated with the flux of organic matter flux. Florisphaera profunda, Gladiolithus flabellatus, Gephyrocapsa oceanica, Umbilicosphaera sibogae var. sibogae, Emiliania huxleyi, and Oolithotus fragilis were the most abundant species together comprising more than 85% of the total flora. Observed seasonal changes of the species composition of coccolith flora, as well as analysis of the R-mode cluster, revealed that during the summer, the assemblage was marked by the dominance of G. oceanica and U. sibogae. However, during the winter, the assemblage was dominated by E. huxleyi and O. fragilis. These assemblage changes were influenced by monsoonal events, which were observed off the New Guinea coast. F. profunda dominated the community in the shallow trap throughout most of the year; peak values of this species were recorded during the winter. The coccosphere assemblage was dominated by G. oceanica at both water depths. In the deep trap, the sedimentation pattern was similar to that observed at the shallow depth. Mean coccolith and coccosphere fluxes at the deep trap were 2000×106 coccolith m−2 day−1 and 0.08×106 coccospheres m−2 day−1, respectively. The increase in coccolith flux with water depth suggests a lateral influx. The estimated average daily mass of CaCO3 flux in coccoliths and coccospheres was 16.6 mg m−2 day−1 at the 1592 m trap and 17.9 mg m−2 day−1 at the 3902 m trap, respectively. These calculated values contributed only 23.3% to the total CaCO3 flux at the shallow trap and 27.9% at the deep trap.  相似文献   

9.
The aim of this study was to examine the impact of bioturbation by the Manila clam, Ruditapes philippinarum, on sediment stability. A laboratory benthic annular flume system (AFS) was deployed to evaluate the relationship between sediment stability of a subtidal mudflat and density of the infaunal clam under the influence of different current velocities. There was a significant correlation between mean erosion rate and current velocities in all treatments with clams (p < 0.001). There was also a significant correlation between mean erosion rate and R. philippinarum density (p < 0.001), reflecting bioturbation-enhanced sediment erosion. The effects of clam density on sediment erodability were more marked at the lower current velocities. In the control, the critical erosion velocity (Ūcrit) was about 32 cm s−1. With increasing R. philippinarum density, Ūcrit decreased down to the minimum value of about 20 cm s−1 at a density of 206 clams m−2. This study demonstrated that the burrowing activity of R. philippinarum reduces sediment stability, particularly at relatively low current velocities (25 cm s−1) and at densities below those found in the clam cultivation areas within the Sacca di Goro lagoon.  相似文献   

10.
Although the coastal zone of the Central Namib Desert (Namibia) has negligible rainfall, frequent fog, dew and high air humidity support a luxurious lichen flora. Large areas of soil crust communities are dominated by the multibranched, fruticose Teloschistes capensis interspersed by a (still indeterminable) Ramalina species. In earlier communications, based on field measurements in autumn, we began the analysis of functional mechanisms that allow these lichens to exist under the special conditions of a fog desert. We have extended this work by monitoring lichen CO2 exchange and water relations in spring and by experiments under controlled conditions.In both seasons, nocturnal hydration, by fog and/or dew, activated dark respiration of the lichens which was followed, after sunrise, by a short period of positive net photosynthesis (NP) that continued until metabolic inactivation occurred from desiccation. Dry thalli of T. capensis were able to reactivate NP through water vapour uptake alone, beginning at an air relative humidity of 82%, i.e. at a water potential of −26.3 MPa; the moisture compensation point during desiccation was at 13% thallus water content (WC, dry weight related). Optimal WC for photosynthesis was around 100%, and both species showed a large and extended suprasaturation depression of CO2 assimilation. Light response showed “sun-plant” characteristics with saturation >1000 μmol m−2 s−1 photosynthetically active photon flux density (PPFD). However, due to rapid desiccation, the combination of light saturation with optimal WC very rarely occurred under field conditions. Light compensation point after sunrise was highly dependent on actual WC: at low hydration, it amounted to only ca. 10 μmol m−2 s−1 PPFD so that even the smallest levels of hydration could be used for carbon gain before desiccation took place again. This phenomenon was probably due to a hydration gradient in the thallus branches during transient moistening so that the outer photobiont layer was favoured in contrast to the internal mycobiont which remained dry longer and did not contribute respiratory CO2 loss. Fully hydrated thalli had light compensation points around 50 μmol m−2 s−1 PPFD. Extended desiccation of 1–3 days had no impact on the magnitude and recovery of photosynthesis but, imposed desiccation of 10 days reduced NP in lab and field experiments and caused an extended period of recovery. “Resaturation respiration” was not detected in the field data, although it was present after experimental moistening of dry thalli.In spring, the higher fog frequency and intensity increased maximal nocturnal WC, maximal attained NP as well as integrated daily carbon income (ΣNP) compared to the autumn measurements. NPmax and ΣNP depended on maximal nocturnal WC with a saturation-type response. In terms of carbon gain both species seem to be optimally adapted to nocturnal moistening up to 160% WC and were not able to make use of higher degrees of hydration, a feature that might well influence their habitat selection.Maximal daily carbon-related ΣNP for T. capensis was 4.6 mgC (gC)−1 day−1. A rough estimate of the annual (projected) area-related carbon balance (photosynthetic income minus respiratory losses) based on published fog and dew frequencies and personal observations was 15–34 mgC m−2 yr−1.  相似文献   

11.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

12.
Optical Properties and Light Climate in Lake Verevi   总被引:2,自引:2,他引:0  
The optical properties and light climate during the ice-free period in the highly stratified Lake Verevi (Estonia) have been studied together with other lakes in same region since 1994. The upper water layer above the thermocline belongs to class “moderate” by optical classification of Estonian lakes but can turn “turbid” (concentration of chlorophyll a up to 73 mg m−3 and total suspended matter up to 13.2 g m−3) during late summer blooms. In the blue part of the spectrum, light is mainly attenuated by dissolved organic matter and in red part notably scattering but also absorption by phytoplanktonic pigments effect the spectral distribution of underwater light. Consequently, the underwater light is of greenish-yellow color (550–650 nm). Rapid change in optical properties occurs with an increase of all optically active substances close to thermocline (2.5–6 m). Optical measurements are often hampered beneath this layer so that modeling of the depth distribution of the diffuse attenuation coefficient is an useful compliment to field measurements. Kd,PAR ranges from 0.8 to 2.9 m−1 in the surface layer, and model results suggest that it may be up to 5.8 m−1 in the optically dense layer. This forms a barrier for light penetration into the hypolimnion.  相似文献   

13.
Veneklaas  Erik J.  Poot  Pieter 《Plant and Soil》2003,257(2):295-304
Woodlands in south-western Australia are evergreen and transpire throughout the year despite the long, hot and dry summers of the Mediterranean climate. Results from a case study in a species-rich Banksia woodland are used to discuss the ecological and physiological properties that appear to be essential features of this and similar communities. Tree, shrub and perennial herbaceous species with long-lived leaves dominate the community, whereas winter-green herbaceous species with short-lived leaves constitute a minor group. The total leaf area index is therefore reasonably constant in all seasons. Leaf area index is low and canopies are open, causing good coupling between the vegetation and the atmosphere, and making stomatal control an effective regulator of transpiration. Mean maximum (winter) stomatal conductances were high at approximately 300 mmol m–2 s–1. Deep-rootedness allows the dominant species to access soil moisture throughout the unsaturated zone, and down to the capillary fringe of the saturated zone. Shrubs and herbs with shallow roots experience greater drought stress during summer. Rates of community evapotranspiration are limited by leaf area index in the wet season, and further reduced by stomatal closure in the dry season. Deep-rooted plants appear to decrease their stomatal conductance before the development of severe drought stress. Such conservative behaviour, possibly related to plant hydraulic constraints, is a contributing factor to the limited seasonality in community water use.  相似文献   

14.
The technique of affinity chromatography with the curarizing neurotoxins of Naja naja venom has been employed to extract nicotinic acetylcholine receptors from the brain tissues of mouse and hog. Both carbochol and hexamethonium were used as linear or step gradients to elute the receptor and its properties were investigated in lipid bilayer membranes. Of particular interest is the observation that discrete quanta of conductance could be observed across an NaCl gradient of 1.0:0.1 M. By switching the voltage-clamp across the bilayer between a positive and negative 80 mV, the separate Na+ and Cl conductances of these quanta could be estimated and the following conductances of the smallest discrete quanta were observed: 3.7 · 10−11 Ω−1 (Na+) and 5.9 · 10−11 Ω−1 (Cl) for mouse brain receptors; 3.8 · 10−11 Ω−1 (Na+) and 4.7 · 10−11 Ω−1 (Cl) for hog brain receptors. Large aggregates of receptors appeared to activate and deactivate as multiples of a basic conductance size, although there is evidence that they may not represent the actual gating of ion channels. A “background noise” that is not within the temporal capability of the recording system is also present at an intensity that seems to parallel the number of activated receptors, and in view of recent electrophysiological evidence that the relaxation lifetime of the open channel state is of a millisecond duration, it may be that this “noise” actually represent the channel gating.  相似文献   

15.
Although there is only negligible rainfall, frequent nocturnal fog, dew and high air humidity support a luxurious lichen vegetation in the coastal zone of the central Namib Desert (Namibia). In earlier publications, we have studied ecophysiological performance of a series of epilithic and terrestrial lichens. Here, we have extended this work to three epiphytic species (Heterodermia namaquana, Ramalina lacera, and Xanthoria turbinata) that inhabit the sparse perennial shrubs growing in this area. Our intention, monitoring lichen CO2 exchange, their water relations and microclimate conditions, was to determine the functional mechanisms that allow these epiphytes to exist under the special conditions of a fog desert. Measurements were conducted mainly during the spring season.The epiphytic lichens showed response patterns very similar to the epilithic and epigaeic species at the same site. Their metabolism was activated through moistening by dew and/or fog during the night and, in the very early morning, they exhibited the typical brief peak of net photosynthesis (NP) between sunrise and desiccation. The thalli were almost completely dry for the remainder of the day. Average duration of the positive NP during the morning peak was about 3 h. Dew condensation, alone, resulted in activation that provided 58–63% of integrated carbon income (ΣNP) as compared to fog (plus dew). In the late afternoon, there was a tendency for hydration to increase again, due to water vapour uptake at higher air humidity, and this allowed on some days a brief additional period of very low rates of photosynthesis shortly before sunset.Light response of photosynthesis showed “sun-plant” characteristics with saturation around 1000 μmol m−2 s−1 photosynthetically active photon flux density (PPFD). Light compensation point (LCP) of CO2 exchange after sunrise was highly dependent on actual water content (WC) for X. turbinata: at low hydration it was ca. 10 μmol m−2 s−1 PPFD whilst, at high WC, it was almost 80 μmol m−2 s−1 PPFD. In contrast, LCP of R. lacera was almost independent of WC. This phenomenon was probably due to differences in thallus structure.Maximal attained NP and daily ΣNP both showed a saturation-type response to previous maximal nocturnal WC. Neither parameter was increased substantially when higher maximal thallus WCs were produced by experimental moistening in the night. All three species, despite their different morphologies, performed optimally at the highest nocturnal moistening achieved by natural fog and were not able to make use of higher hydration.The three studied epiphytes were similar in their chlorophyll-related rates of NP. Due to lower chlorophyll content, dry weight and carbon-related NP of X. turbinata was only about one-third of that of the other two species. The average carbon income on days with fog and/or dew hydration during the spring season amounted to 2.4 and 2.1 mgC (gC)−1 day−1 (related to thallus carbon content) for H. namaquana and R. lacera, respectively. This primary production was of similar magnitude to those found for the terrestrial species at the same site.  相似文献   

16.
Primary Production of Phytoplankton in a Strongly Stratified Temperate Lake   总被引:7,自引:7,他引:0  
Lake Verevi (12.6 ha, maximum depth 11.0 m, mean depth 3.6 m) is a strongly eutrophic and stratified lake. Planktothrix agardhii is the most characteristic phytoplankton species in summer and autumn, while photosynthesizing sulphur bacteria can occur massively in the metalimnion. Primary production (PP) and chlorophyll a concentration (Chl a) were seasonally studied in 1991, 1993, 2000, and 2001. Vertical distribution of PP was rather complex, having usually two peaks, one at or near the surface (0–1 m), and another deeper (at 3–7 m) in the metalimnion. The values of dark fixation of CO2 in the metalimnion were in most cases higher than those in the upper water layer. Considering the average daily PP 896 mg C m−2 and yearly PP 162 mg C m−2, Secchi depth 2.34 m, and epilimnetic concentrations of chlorophyll a (19.6 mg m−3), total nitrogen and total phosphorus (TP, 52 mg m−3) in 2000, L. Verevi is a eutrophic lake of a ‘good’ status. Considering the total amounts of nutrients stored in the hypolimnion, the average potential concentrations in the whole water column could achieve 1885 mg m−3 of TN and 170 mg m−3 of TP reflecting hypertrophic conditions and a ‚bad’ status. Improvement of the epilimnetic water quality from the 1990s to the 2000s may have resulted from incomplete spring mixing and might not reflect the real improvement. A decreased nutrient concentration in the epilimnion has supported the establishment of a ‘clear epilimnion state’ allowing light to penetrate into the nutrient-rich metalimnion and sustaining a high production of cyanobacteria and phototrophic sulphur bacteria.  相似文献   

17.
Hakkari  L.  Bagge  P. 《Hydrobiologia》1992,(1):405-412
The annual reproductive success of Coregonus albula and C. lavaretus in some polluted and clean areas of the central parts of L. Päijänne was estimated in 1981–90 on the basis of occurrence of larvae in shore seine and seine net samples after the ice melted. In polluted areas (0–5 km from Kaipola paper mill) larvae of coregonids were found only occasionally. In semipolluted areas (5–15 km from the paper mill) the densities of larvae were usually less than 0.1 ind m–2. In clean areas the mean densities of larvae ranged from 0.45 to 5.34 inds m–2. A relatively high reproductive success of vendace was observed in 1984–85, moderate success in 1982–83 and low success in 1986–90. The larvae of whitefish were scarce in both polluted and semipolluted areas and their density ranged from 0.01 to 0.15 ind m–2 in clean shores. The highest density was observed in 1989. In spite of the improvement of the quality of water in the area in the 1980s, the reproductive success of coregonids is still low in a great part of the basin which may depend on adverse oxygen conditions of the hypolimnion and sediment and the toxic effects of the effluents.  相似文献   

18.
A water-soluble glucuronan “protuberic acid”, [α]d22 −83.6° and purified from Kobayashia Nipponica, and its physicochemical properties were investigated.The purified protuberic acid was homogeneous as shown by zone electrophoresis, gel filtration over Sepharose 4B, and ultracentrifugation. The sedimentation coefficient was 1.8 S and its intrinsic viscosity was 1.1 dl/g. By gel filtration the molecular weight was estimated to be about 170 000. The results of periodate oxidation, methylation analysis, and partial acid hydrolysis indicated that this acidic polysaccharide has a linear structure of mainly 1,4-linkages and containing an acid-labile linkage. Reduced protuberic acid, [α]d22 −44°, is also described.  相似文献   

19.
Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during 1 year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year−1. Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m−2 year−1, 55 g N m−2 year−1, and 13 g P m−2 year−1.  相似文献   

20.
Here, we report the results of monitoring the rotifer community in the Pripyat River within the 30-km evacuation zone of the Chernobyl Nuclear Power Plant over the period 1988–1996. While radionuclide concentration in water did not exceed 4.07 Bq l–1, the radioactivity in the bottom sediment was quite high, varying irregularly between 113 and 824 kBq m2. Radionuclide concentration in the seston also ranged widely: riverbed = 659–2491; backwater = 168–32 832 Bq kg–1. The rotifer density varied in the range of 65–17 970 individuals l–1. Sixty-seven rotifer species were identified in the Pripyat, with nine species being previously unknown to this river. Species richness (jackknife estimate) in both the riverbed and the backwater stations was similar and was characterized by a very great variability: riverbed = 66.1 (df=20, SD=39.50); back-water = 66.2 (df=20, SD=42.17). Correlation between the heterogeneity of rotifer community (H ') and the number of species and relative density of the dominant species was evident. The degree of statistical interrelation between H ' and relative density of the dominant species was especially high in the riverbed station (r 2= 0.74, p= 0.00001). However, no significant correlation between radionuclide concentration and rotifer biodiversity was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号