首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.  相似文献   

2.
We have evaluated the possible mechanisms of liver fibrosis caused by Fasciola hepatica in an animal model and in culture using immortalized human stellate cells. Liver biopsies of F. hepatica-infected rats were performed at wk 8 and 16. Serum-starved LX-2 cells, a human stellate cell line, were exposed to increasing concentrations of Fas2 antigen. The expression of key fibrosis-related genes was evaluated by qRT-PCR. There was a significant correlation between fibrogenic gene expression and both intensity and duration of infection. LX-2 cells exposed to Fas2 showed progressively increased expression of mRNAs for Collagen I, alpha-smooth muscle-actin, platelet-derived growth factor beta receptor, and tissue inhibitor of metalloproteinase II; inhibition of Fas2 cysteine proteinase activity by E-64 abrogated these increases, suggesting that the protease activity of Fas2 is involved in fibrogenic stimulation. In summary, F. hepatica infection is associated with up-regulation of mRNAs associated with hepatic fibrogenesis in vivo and in activated hepatic stellate cells.  相似文献   

3.
The role of retinoic acid (RA) in liver fibrogenesis was previously studied in cultured hepatic stellate cells (HSCs). RA suppresses the expression of alpha2(I) collagen by means of the activities of specific nuclear receptors RARalpha, RXRbeta and their coregulators. In this study, the effects of RA in fibrogenesis were examined in carbon tetrachloride (CCl4) induced liver fibrosis in mice. Mice were treated with CCl4 or RA and CCl4, along side control groups, for 12weeks. RA reduced the amount of histologically detectable fibrosis produced by CCl4. This was accompanied by a attenuation of the CCl4 induced increase in alpha2(I) collagen mRNA and a lower (2-fold versus 3-fold) increase in liver hydroxyproline. Furthermore, RA reduced the levels of 3-nitrotyrosine (3-NT) protein adducts and thiobarbituric acid (TBA) reactive substance (TBARS) in the liver, which are formed as results of oxidative stress induced by CCl4 treatment. These in vivo findings support our previous in vitro studies in cultured HSC of the inhibitory effect of RA on type I collagen expression. The data also provide evidence that RA reduces CCl4 induced oxidative stress in liver, suggesting that the anti-fibrotic role of RA is not limited to the inhibition of type I collagen expression.  相似文献   

4.
Endothelin-1 production is increased after liver injury and the subsequent wounding response. Further, endothelin-1 has prominent effects on hepatic stellate cells (key effectors of the hepatic wounding response), including on collagen synthesis, proliferation, and expression of smooth muscle proteins. We tested the hypothesis that endothelins (ETs) may regulate endothelin-1 production during hepatic wounding, and have investigated potential mechanisms underlying this process. Studies were performed on isolated stellate cells from normal and injured livers; in addition, potential autocrine effects of ET were assessed in vivo using an ET receptor antagonist in a model of liver injury. In stellate cells isolated from either normal or injured rat livers, ET receptor stimulation with endothelin-3 or sarafotoxin S6C (preferential ET(B) agonists) caused a dose-dependent increase in endothelin-1 production. Additionally, administration of a mixed ET antagonist in vivo during injury led to reduced stellate cell production of endothelin-1. The mechanism by which ETs stimulated endothelin-1 in this system appeared to be through upregulation of ET converting enzyme-1 (which converts precursor ET to mature peptide), rather than by modulation of precursor endothelin-1. We conclude that during liver injury and wound healing, stellate cell endothelin-1 production is, at least partially, stimulated by ETs via autocrine mechanisms that occur at the level of ET converting enzyme-1.  相似文献   

5.
Endothelin-1 (ET-1), a powerful vasoconstrictor peptide, is produced by activated hepatic stellate cells (HSC) and promotes cell proliferation, fibrogenesis, and contraction, the latter of which has been thought to be mechanistically linked to portal hypertension in cirrhosis. Interferon-γ (IFNγ), a Th1 cytokine produced by T cells, inhibits stellate cell proliferation, fibrogenesis, and muscle-specific gene expression. Whether IFNγ-induced inhibitory effects are linked to regulation of ET-1 expression in activated stellate cells remains unknown. Here we examined IFNγ's effects on preproET-1 mRNA expression and the signaling pathways underlying this process. We demonstrated that preproET-1 mRNA expression in HSCs was prominently increased during cell culture-induced activation; IFNγ significantly inhibited both preproET-1 mRNA expression and ET-1 peptide production. Similar results were found in an in vivo model of liver injury and intraperitoneal administration of IFNγ. PreproET-1 promoter analysis revealed that IFNγ-induced inhibition of preproET-1 mRNA expression was closely linked to the AP-1 and Smad3 signaling pathways. Furthermore, IFNγ reduced JNK phosphorylation, which tightly was associated with decreased phosphorylation of downstream factors c-Jun and Smad3 and decreased binding activity of c-Jun and Smad3 in the preprpET-1 promoter. Importantly, IFNγ reduced both c-Jun mRNA and protein levels. Given the important role of ET-1 in wound healing, our results suggest a novel negative signaling network by which IFNγ inhibits preproET-1 expression, highlighting one potential molecular mechanism for IFNγ-induced host immunomodulation of liver fibrogenesis.  相似文献   

6.
A proteome approach for the molecular analysis of the activation of rat stellate cell, a liver-specific pericyte, led to the discovery of a novel protein named STAP (stellate cell activation-associated protein). We cloned STAP cDNA. STAP is a cytoplasmic protein with molecular weight of 21,496 and shows about 40% amino acid sequence homology with myoglobin. STAP was dramatically induced in in vivo activated stellate cells isolated from fibrotic liver and in stellate cells undergoing in vitro activation during primary culture. This induction was seen together with that of other activation-associated molecules, such as smooth muscle alpha-actin, PDGF receptor-beta, and neural cell adhesion molecule. The expression of STAP protein and mRNA was augmented time dependently in thioacetamide-induced fibrotic liver. Immunoelectron microscopy and proteome analysis detected STAP in stellate cells but not in other hepatic constituent cells. Biochemical characterization of recombinant rat STAP revealed that STAP is a heme protein exhibiting peroxidase activity toward hydrogen peroxide and linoleic acid hydroperoxide. These results indicate that STAP is a novel endogenous peroxidase catabolizing hydrogen peroxide and lipid hydroperoxides, both of which have been reported to trigger stellate cell activation and consequently promote progression of liver fibrosis. STAP could thus play a role as an antifibrotic scavenger of peroxides in the liver.  相似文献   

7.
Integrin-linked kinase (ILK) is an intracellular effector of cell–matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing.  相似文献   

8.
BACKGROUND/AIMS: Profibrogenic TGF-beta signaling in hepatic stellate cells is modulated during transdifferentiation. Strategies to abrogate TGF-beta effects provide promising antifibrotic results, however, in vivo data regarding Smad activation during fibrogenesis are scarce. METHODS: Here, liver fibrosis was assessed subsequent to bile duct ligation by determining liver enzymes in serum and collagen deposition in liver tissue. Activated hepatic stellate cells were identified by immunohistochemistry and immunoblots for alpha smooth muscle actin. Cellular localization of Smad3 and Smad7 proteins was demonstrated by immunohistochemistry. RTPCR for Smad4 and Smad7 was conducted with total RNA and Northern blot analysis for Smad7 with mRNA. Whole liver lysates were prepared to detect Smad2/3/4 and phospho- Smad2/3 by Western blotting. RESULTS: Cholestasis induces TGF-beta signaling via Smad3 in vivo, whereas Smad2 phosphorylation was only marginally increased. Smad4 expression levels were unchanged. Smad7 expression was continuously increasing with duration of cholestasis. Hepatocytes of fibrotic lesions exhibited nuclear staining Smad3. In contrast to this, Smad7 expression was localized to activated hepatic stellate cells. CONCLUSIONS: Hepatocytes of damaged liver tissue display increased TGF-beta signaling via Smad3. Further, negative feedback regulation of TGF-beta signaling by increased Smad7 expression in activated hepatic stellate cells occurs, however does not interfere with fibrogenesis.  相似文献   

9.
Liver fibrosis is overly exuberant wound healing that leads to portal hypertension or liver cirrhosis. Recent studies have demonstrated the functions of bone morphogenetic protein 9 (BMP9) in liver fibrosis, and thus, targeting liver-specific BMP9 abnormalities will become an attractive approach for developing therapeutics to treat liver fibrosis. Here, we reveal that BMP9 serves as a valuable serum diagnostic indicator and efficient therapeutic target to attenuate liver fibrogenesis. Our analysis of biopsies from liver fibrotic patients revealed that higher BMP9 levels accompanied advanced stages of liver fibrosis. In mouse models, recombinant Bmp9 overexpression accelerated liver fibrosis, and adenovirus-mediated Bmp9 knockdown attenuated liver fibrogenesis. Intriguingly, BMP9 directly stimulated hepatic stellate cell activation via the SMAD signaling pathway to enhance hepatic fibrosis. Moreover, an inhibitory monoclonal antibody targeting Bmp9 was efficacious in treatment of mice with liver fibrosis. These observations delineate a novel model in which BMP9 directly drives SMAD/ID1 signaling in hepatic stellate cells, which modulates liver fibrogenesis development. Moreover, the findings unveil a promising surrogate biomarker for the diagnosis of hepatic fibrosis, thereby representing an efficient “BMP9 neutralization” approach in alleviating hepatic fibrosis.  相似文献   

10.
Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injuries, and its progression toward cirrhosis is the major cause of liver-related morbidity and mortality worldwide. However, anti-fibrotic treatment remains an unconquered area for drug development. Accumulating evidence indicate that oxidative stress plays a critical role in liver fibrogenesis. In this study, we found that PQQ, a natural anti-oxidant present in a wide variety of human foods, exerted potent anti-fibrotic and ROS-scavenging activity in Balb/C mouse models of liver fibrosis. The antioxidant activity of PQQ was involved in the modulation of multiple steps during liver fibrogenesis, including chronic liver injury, hepatic inflammation, as well as activation of hepatic stellate cells and production of extracellular matrix. PQQ also suppressed the up-regulation of RACK1 in activated HSCs in vivo and in vitro. Our data suggest that PQQ suppresses oxidative stress and liver fibrogenesis in mice, and provide rationale for the clinical application of PQQ in the prevention and treatment of liver fibrosis.  相似文献   

11.
Tang LX  He RH  Yang G  Tan JJ  Zhou L  Meng XM  Huang XR  Lan HY 《PloS one》2012,7(2):e31350
Liver fibrosis is a major cause of liver failure, but treatment remains ineffective. In the present study, we investigated the mechanisms and anti-hepatofibrotic activities of asiatic acid (AA) in a rat model of liver fibrosis induced by carbon tetrachloride (CCl(4)) and in vitro in TGF-beta1-stimulated rat hepatic stellate cell line (HSC-T6). Treatment with AA significantly attenuated CCl(4)-induced liver fibrosis and functional impairment in a dosage-dependent manner, including blockade of the activation of HSC as determined by inhibiting de novo alpha smooth muscle actin (a-SMA) and collagen matrix expression, and an increase in ALT and AST (all p<0.01). The hepatoprotective effects of AA on fibrosis were associated with upregulation of hepatic Smad7, an inhibitor of TGF-beta signaling, thereby blocking upregulation of TGF-beta1 and CTGF and the activation of TGF-beta/Smad signaling. The anti-fibrosis activity and mechanisms of AA were further detected in vitro in HSC-T6. Addition of AA significantly induced Smad7 expression by HSC-T6 cells, thereby inhibiting TGF-beta1-induced Smad2/3 activation, myofibroblast transformation, and collagen matrix expression in a dosage-dependent manner. In contrast, knockdown of Smad7 in HSC-T6 cells prevented AA-induced inhibition of HSC-T6 cell activation and fibrosis in response to TGF-beta1, revealing an essential role for Smad7 in AA-induced anti-fibrotic activities during liver fibrosis in vivo and in vitro. In conclusion, AA may be a novel therapeutic agent for liver fibrosis. Induction of Smad7-dependent inhibition of TGF-beta/Smad-mediated fibrogenesis may be a central mechanism by which AA protects liver from injury.  相似文献   

12.
The mechanisms that initiate and perpetuate the fibrogenic response, during liver injury, are unclear. Animal studies, however, strongly support a role for the autonomic nervous system (ANS) in wound healing. Therefore, the ANS may also mediate the development of cirrhosis. Hepatic stellate cells (HSC), the liver's major matrix-producing cells, are activated by injury to become proliferative, fibrogenic myofibroblasts. HSC respond to sympathetic neurotransmitters by changing phenotype, suggesting that HSC may be the cellular effectors of ANS signals that modulate hepatic fibrogenesis during recovery from liver damage. We show here that the parasympathetic neurotransmitter acetylcholine markedly stimulates the proliferation of myofibroblastic HSC and induces HSC collagen gene expression in these cells. By extending evidence that HSC are direct targets of the ANS, these results support the proposed neuroglial role of HSC in the liver and suggest that interrupting ANS signalling may be useful in constraining the fibrogenic response to liver injury.  相似文献   

13.
Sphingosine 1-phosphate (S-1-P), a lipid mediator shown to be a ligand for aortic G protein-coupled receptor [corrected] (AGRs), endothelial differentiation gene (EDG)1, EDG3, and AGR16/EDG5, is stored in platelets and released on their activation. Platelet consumption occurs in acute liver injury. Hepatic stellate cells (HSCs) play an important role in wound healing. Effects of S-1-P on HSCs were investigated. S-1-P enhanced proliferation of culture-activated HSCs. The mitogenic effect was pertussis toxin sensitive, mitogen-activated protein kinase dependent, and more prominent at lower cell density. S-1-P increased contraction of collagen lattices containing HSCs, irrespective of activation state, in a C3 exotoxin-sensitive manner. mRNAs of EDG1 and AGR16, but not of EDG3, were detected in HSCs. In HSC activation, EDG1 mRNA levels were downregulated, whereas AGR16 mRNA levels were unchanged. Considering that HSCs are capable of production of extracellular matrices and modulation of blood flow in sinusoids, our results suggest that S-1-P may play a role in wound healing process in the liver.  相似文献   

14.
Spontaneous hepatic fibrosis in transgenic mice overexpressing PDGF-A   总被引:2,自引:0,他引:2  
Platelet derived growth factor (PDGF) plays a central role in repair mechanisms after acute and chronic tissue damage. To further evaluate the role of PDGF-A in liver fibrogenesis in vivo, we generated transgenic mice with hepatocyte-specific overexpression of PDGF-A using the CRP-gene promoter. Transgenic but not wildtype mice showed expression of PDGF-A mRNA in the liver. Hepatic PDGF-A overexpression was accompanied by a significant increase in hepatic procollagen III mRNA expression as well as TGF-beta1 expression. Liver histology showed increased deposition of extracellular matrix in transgenic but not in wildtype mice. PDGF-A-transgenic mice showed positive sinusoidal staining for alpha-SMA indicating an activation of hepatic stellate cells. Since the profibrogenic effect of PDGF-A was accompanied by increased TGF-beta1 protein concentration in the liver of transgenic mice, it can be postulated that PDGF-A upregulates expression of TGF-beta1 which is a strong activator of hepatic stellate cells. Thus, these results point towards a fibrosis induction by PDGF-A via the TGF-beta1 signalling pathway. In conclusion, expression and functional analysis of PDGF-A in the liver of transgenic mice suggest a relevant profibrogenic role of PDGF-A via TGF-beta1 induction. Counteracting PDGF-A may therefore be one of the effects of tyrosine kinase inhibitors which showed protective effects in animal models of liver fibrosis.  相似文献   

15.
Smooth muscle α actin (Acta2) expression is largely restricted to smooth muscle cells, pericytes and specialized fibroblasts, known as myofibroblasts. Liver injury, associated with cirrhosis, induces transformation of resident hepatic stellate cells into liver specific myofibroblasts, also known as activated cells. Here, we have used in vitro and in vivo wound healing models to explore the functional role of Acta2 in this transformation. Acta2 was abundant in activated cells isolated from injured livers but was undetectable in quiescent cells isolated from normal livers. Both cellular motility and contraction were dramatically increased in injured liver cells, paralleled by an increase in Acta2 expression, when compared with quiescent cells. Inhibition of Acta2 using several different techniques had no effect on cytoplasmic actin isoform expression, but led to reduced cellular motility and contraction. Additionally, Acta2 knockdown was associated with a significant reduction in Erk1/2 phosphorylation compared to control cells. The data indicate that Acta2 is important specifically in myofibroblast cell motility and contraction and raise the possibility that the Acta2 cytoskeleton, beyond its structural importance in the cell, could be important in regulating signaling processes during wound healing in vivo.  相似文献   

16.
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.  相似文献   

17.

Background  

Liver fibrosis is the common sequel of chronic liver diseases. Recent studies have identified hepatic stellate cells as the primary cell type mediating hepatic fibrogenesis. It has been demonstrated that hepatic stellate cells undergo a process of activation during the development of liver fibrosis. During the activation process, hepatic stellate cells acquire myofibroblast-like phenotype featuring the expression of smooth muscle alpha actin. Interferons have been employed for the treatment of viral hepatitis. However, it is unclear what is the effect of interferons on the prevention and treatment of liver fibrosis. Moreover, it is not clear whether there are any differences among interferon alpha, interferon beta, and interferon gamma in the treatment of liver fibrosis. Therefore, our objective in current study is to investigate the effects of rat interferon-α, interferon-β, and interferon-γ on the proliferation and activation of rat hepatic stellate cells.  相似文献   

18.
Integrin-linked kinase (ILK) is a ubiquitously expressed serine/threonine protein kinase that has been implicated in cancer development, progression and metastasis. The aim of the present study was to characterize the role of ILK in glioma cell invasion and migration. We generated a recombinant eukaryotic expression vector containing the human ILK gene and transfected it into human glioma SHG-44 cells. Real-time PCR and western blot analysis were used to identify the stable transformants. The wound healing and Transwell invasion assays showed that ectopic overexpression of ILK in SHG-44 cells significantly promoted their migration and invasion capabilities in culture. This was accompanied by a decrease in expression of E-cadherin and an increase in expression of Snail and Slug. Moreover, the decrease in E-cadherin expression induced by ILK overexpression was greatly restored by the nuclear factor-κB (NF-κB) inhibitor BAY 11-7028 or small interfering RNA targeting NF-κB p65, indicating an involvement of NF-κB in ILK-induced down-regulation of E-cadherin. In conclusion, our data underscore a novel role for ILK in glioma invasion and metastasis processes, implicating potential for therapeutic interference.  相似文献   

19.
Activated hepatic stellate cells produce vascular endothelial growth factor (VEGF). VEGF has been shown to act on mesenchymal cells as well. If hepatic stellate cells can express FLT tyrosine receptor family, flt-1 and KDR/flk-1, their function might be regulated by VEGF in an autocrine manner. This hypothesis was tested using hepatic stellate cells isolated from normal rats. Northern blot analysis and immunocytochemical study revealed that hepatic stellate cells cultured for 3 days on plastic dishes expressed both flt-1 and KDR/flk-1. When the culture was prolonged to 10 days, the flt-1 mRNA expression was increased, whereas both KDR/flk-1 mRNA and protein expressions diminished. DNA and collagen syntheses were minimal in the cells cultured for 3 days, but marked in those cultured for 10 days. Addition of recombinant human VEGF to the culture medium did not change both syntheses but attenuated an increase of smooth muscle alpha-actin expression in the cells during culture on plastic dishes and also contraction of collagen gels on which the cells were cultured. We conclude that VEGF may inhibit contraction of hepatic stellate cells appearing during activation by culture, probably through attenuation of smooth muscle alpha-actin expression via upregulated VEGF receptor, flt-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号