首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested whether signaling pathways induced by systemin, oligosaccharide elicitors (OEs), and ultraviolet (UV)-B radiation share common components in Lycopersicon peruvianum suspension-cultured cells. These stress signals all induce mitogen-activated protein kinase (MAPK) activity. In desensitization assays, we found that pretreatment with systemin and OEs transiently reduced the MAPK response to a subsequent treatment with the same or a different elicitor. In contrast, MAPK activity in response to UV-B increased after pretreatment with systemin and OEs. These experiments demonstrate the presence of signaling components that are shared by systemin, OEs, and UV-B. Based on desensitization assays, it is not clear if the same or different MAPKs are activated by different stress signals. To identify specific stress-responsive MAPKs, we cloned three MAPKs from a tomato (Lycopersicon esculentum) leaf cDNA library, generated member-specific antibodies, and performed immunocomplex kinase assays with extracts from elicited L. peruvianum cells. Two highly homologous MAPKs, LeMPK1 and LeMPK2, were activated in response to systemin, four different OEs, and UV-B radiation. An additional MAPK, LeMPK3, was only activated by UV-B radiation. The common activation of LeMPK1 and LeMPK2 by many stress signals is consistent with the desensitization assays and may account for substantial overlaps among stress responses. On the other hand, MAPK activation kinetics in response to elicitors and UV-B differed substantially, and UV-B activated a different set of LeMPKs than the elicitors. These differences may account for UV-B-specific responses.  相似文献   

2.
Suspension-cultured cells of Lycopersicon peruvianum L. reacted to the presence of mechanically damaged cells with a transient alkalinization of their culture medium. This response resembled the alkalinization observed after treatment with fungal signal molecules such as chitin fragments and ergosterol or after application of the protein phosphatase inhibitor calyculin A. When compounds implicated in wound signalling were tested, the 18 amino acid peptide systemin was found to be a potent inducer of the alkalinization response, with a half-maximal activity at concentrations of ~100 pM. The decrease in extracellular H+ was paralleled by an increase of K+, and induction of both ion fluxes was blocked by the protein kinase inhibitor K-252a. Systemin also caused rapid increases in the activities of 1-aminocyclopropane-1-carboxylate (ACC) synthase and phenylalanine ammonia-lyase, two other responses commonly observed in cells treated with elicitors. The systemin analogue systemin-Ala17, a reported systemin antagonist in the induction of proteinase inhibitors in tomato plants, provoked a much weaker alkalinization response and did not induce ACC synthase at all. When applied together with authentic systemin, this analogue antagonized induction of both responses, indicating that the perception system for systemin had very similar properties in the L. peruvianum cells as in tomato plants. In conclusion, suspension-cultured L. peruvianum cells provide a convenient and highly sensitive system to study elements of wound response and, in particular, systemin perception.  相似文献   

3.
Leaf wounding and the wound signaling peptide systemin induce expression of wound response genes while the fungal toxin fusicoccin (FC) induces expression of pathogenesis-related genes. Consistent with their functional differences, FC and systemin regulate the extracellular pH in opposite ways, with systemin inducing an alkalinization and FC an acidification response. Here we show that systemin, wounding and FC activate the same mitogen-activated protein kinases (MAPKs; MPKs) MPK1 and 2 in tomato (Lycopersicon esculentum) leaves and L. peruvianum suspension-cultured cells. Wounding and FC activated an additional MAPK, MPK3. Pronounced differences were observed with regard to MAPK activation kinetics. FC induced prolonged, and systemin transient activity of the MAPKs. This shows that functionally different elicitors engage the same signaling components, yet induce signal-specific activation dynamics. A comparative analysis of pH effects and MAPK activity in response to specific treatments revealed that the kinetics of pH changes and MAPK activation did not correlate. Simultaneous application of FC and systemin did not lead to immediate pH changes but resulted in rapid increases in MAPK activity. Furthermore, changes in extracellular pH could be induced without concomitant MAPK activation by exchanging conditioned medium with fresh medium. This shows that changes in the extracellular pH are neither required nor sufficient for MAPK activation, suggesting that signaling pathways involving MAPKs and extracellular pH changes operate in parallel and are not part of the same linear pathway.  相似文献   

4.
5.
Vetsch M  Janzik I  Schaller A 《Planta》2000,211(1):91-97
 Tomato (Lycopersicon esculentum Mill.) prosystemin in fusion with a viral signal peptide was expressed in Sf21 insect cell cultures after infection with recombinant baculoviruses. Prosystemin was purified from culture supernatants and its identity was confirmed by N-terminal sequence and mass-spectral analyses. Recombinant prosystemin was found to be equally active as compared to systemin in inducing the expression of wound-response genes in tomato plants. In cultured cells of L. peruvianum, prosystemin elicited a rapid alkalinization of the growth medium. The timing and dose-dependence of the alkalinization response were found to be identical for prosystemin and systemin, respectively. Prosystemin-triggered defense responses were inhibited by a competitive antagonist of systemin activity, indicating that the systemin sequence within the primary structure of prosystemin determines its activity. Received: 30 August 1999 / Accepted: 6 December 1999  相似文献   

6.
The tomato Leu-rich repeat receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) has been implicated in both peptide (systemin) and steroid (brassinosteroid [BR]) hormone perception. In an attempt to dissect these signaling pathways, we show that transgenic expression of BRI1 can restore the dwarf phenotype of the tomato curl3 (cu3) mutation. Confirmation that BRI1 is involved in BR signaling is highlighted by the lack of BR binding to microsomal fractions made from cu3 mutants and the restoration of BR responsiveness following transformation with BRI1. In addition, wound and systemin responses in the cu3 mutants are functional, as assayed by proteinase inhibitor gene induction and rapid alkalinization of culture medium. However, we observed BRI1-dependent root elongation in response to systemin in Solanum pimpinellifolium. In addition, ethylene perception is required for normal systemin responses in roots. These data taken together suggest that cu3 is not defective in systemin-induced wound signaling and that systemin perception can occur via a non-BRI1 mechanism.  相似文献   

7.
Hypocotyl elongation responses to ultraviolet-B (UV-B) radiation were investigated in glasshouse studies of de-etiolated seedlings of a long-hypocotyl mutant ( lh ) of cucumber ( Cucumis sativus L.) deficient in stable phytochrome, its near isogenic wild type (WT), and a commercial cucumber hybrid (cv. Burpless). A single 6- or 8-h exposure to UV-B applied against a background of white light inhibited hypocotyl elongation rate by ca 50% in lh and WT seedlings. This effect was not accompanied by a reduction in cotyledon area expansion or dry matter accumulation. Plants recovered rapidly from inhibition and it was possible to stimulate hypocotyl elongation in plants exposed to UV-B by application of gibberellic acid. In all genotypes inhibition of elongation was mainly a consequence of UV-B perceived by the cotyledons; covering the apex and hypocotyl with a filter that excluded UV-B failed to prevent inhibition. These results indicate that reduced elongation does not result from assimilate limitation or direct damage to the apical meristem or elongating cells, and strongly suggest that it is a true photomorphogenic response to UV-B. The fact that UV-B fluences used were very low in relation to total visible light, and the similarity in the responses of lh and wild-type plants, are consistent with the hypothesis that UV-B acts through a specific photoreceptor. It is argued that, given the weak correlation between UV-B and visible-light levels in most natural conditions, the UV-B receptor may play an important sensory function providing information to the plant that cannot be derived from light signals perceived by phytochrome or blue/UV-A sensors.  相似文献   

8.
Suspension-cultured tomato cells respond to yeast cell wall preparations with a rapid, transient alkalinization of the culture medium. Depending on the dose of the stimulus, the pH starts to increase after a lag period of about 0.5–2 min and reaches a transient maximum, up to 0.6 pH units above the initial value, after 2–4 min. Using this alkalinization response as a rapid and convenient assay, a sensitive perception system for small chitin fragments was revealed in the tomato cells. Chitin oligomers with four or more N -acetylglucosamine residues stimulated the alkalinization response significantly at concentrations below 10 pM and half-maximally at concentrations of 100 pM. About 10 000-fold higher concentrations of the trimer, N,N',N" -triacetylchitotriose, were required to elicit similar responses. For up to 8 h after a first treatment with 10 nM of the tetramer, N,N',N",N‴ -tetraacetyl-chitotetraose, cells did not respond to a second stimulation with any of the chitin fragments. Throughout this refractory period, however, cells remained fully responsive to preparations of fungal xylanase, another stimulus which induces a more permanent alkalinization after a lag phase of more than 2 min. The alkalinization response to these two qualitatively different stimuli was paralleled by the same characteristic changes in the pattern of protein phosphorylation, detected by in vivo pulse-labelling with [32P]phosphate for 30 sec. The onset of the alkalinization and of the changes in protein phosphorylation coincided in both cases, and both phenomena were blocked by the protein kinase inhibitor K-252a. Although the mechanism underlying the extracellular pH increase is unknown, activation of the alkalinization response provides a sensitive and convenient assay to investigate early events in chemoperception of microbial signals by plant cells.  相似文献   

9.
Sensing of osmotic pressure changes in tomato cells   总被引:8,自引:0,他引:8  
Felix G  Regenass M  Boller T 《Plant physiology》2000,124(3):1169-1180
Cells of tomato (Lycopersicon esculentum) growing in suspension gradually depleted their culture medium and caused a steady decrease in its osmolality. When confronted with a sudden change in medium osmolality (a hypo-osmotic or hyperosmotic shock), respectively, these cells responded with volume changes and stress symptoms such as rapid extracellular alkalinization, efflux of K(+)-ions, and induction of 1-aminocyclopropane-1-carboxylate synthase acid, the key enzyme of ethylene biosynthesis. This array of stress symptoms is well known from cultured plant cells treated with microbial elicitors. Compared with elicitor treatment, induction of responses by hyperosmotic shock was slow and occurred only after increases of approximately 200,000 Pa in osmotic pressure. In contrast, hypo-osmotic shock induced responses without measurable lag and faster than elicitor treatments. Measurable medium alkalinization was induced when medium osmolality was reduced by as little as approximately 10 mosmol, a change corresponding to only approximately 0.2 bar in osmotic pressure. Like treatment with elicitors, hypo-osmotic shock induced specific changes in protein phosphorylations as demonstrated by in vivo labeling with [(33)P]orthophosphate. Exposure of cells to consecutive up- and down-shifts in medium osmolality showed that sensing of osmotic changes occurred within seconds, whereas adaptation to new osmotic conditions proceeded over hours. In conclusion, suspension-cultured plant cells display rapid, easily measurable macroscopic responses to osmotic shock and provide an interesting model system to study osmoregulation, a key process in plant growth and development.  相似文献   

10.
Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.  相似文献   

11.
Brassinosteroid and systemin: two hormones perceived by the same receptor   总被引:8,自引:0,他引:8  
Brassinosteroids, coordinating developmental events, and systemin, inducing systemic wound responses to attacks by insect pests, are newly recognized plant hormones that are perceived by plasma membrane-localized leucine-rich repeat receptor kinases. The recent characterization of the brassinosteroid receptor BRI1 from tomato revealed that this protein is identical to the previously isolated SR160 systemin receptor, strongly suggesting that both brassinosteroid and systemin signalling use the same surface receptor.  相似文献   

12.
The effect of K+ depletion of Hep 2 cells on ion fluxes, internal pH, cell volume, and membrane potential was studied. The cells were depleted of K+ by incubation in K+-free buffer with or without a preceding exposure to hypotonic medium. Efflux of K+ in cells not exposed to hypotonic medium was inhibited by furosemide or by incubation in Na+-free medium, indicating that in this case at least part of the K+ efflux occurs by Na+/K+/Cl- cotransport. After exposure to hypotonic medium, K+ efflux was not inhibited by furosemide, whereas it was partly inhibited by 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS). Exposure to hypotonic medium induced acidification of the cytosol, apparently because of efflux of protons from intracellular acidic vesicles. When isotonicity was restored, a rebound alkalinization of the cytosol was induced, because of activation of the Na+/H+ antiporter. While hypotonic shock and a subsequent incubation in K+-free buffer rapidly depolarized the cells, depolarization occurred much more slowly when the K+ depletion was carried out by incubation in K+-free buffer alone. The cell volume was reduced in both cases. K+ depletion by either method strongly reduced the ability of the cells to accumulate 36Cl- by anion antiport, and K+-depleted cells were unable to increase the rate of 36Cl- uptake in response to alkalinization of the cytosol.  相似文献   

13.
Signal characteristics of G protein-transactivated EGF receptor.   总被引:24,自引:2,他引:22       下载免费PDF全文
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.  相似文献   

14.
Although phorbol 12-myristate 13-acetate (PMA) inhibits apoptosis and promotes the growth of some types of cells, it induces apoptosis in other cells. We evaluated the apoptotic effects of PMA on murine fibroblasts (L-929) that had been exposed to ultraviolet-B (UV-B) radiation at 312 nm, which promotes tumor cell growth. Exposure to PMA alone did not induce Fas, Fas-L, or apoptosis. Cells exposed to mild UV-B irradiation (80 J/m(2)) alone exhibited a slight expression of Fas and Fas-L 36 to 48 h after the exposure, and exhibited apoptosis as evidenced by DNA fragmentation 72 h after exposure. The addition of PMA (0.8 x 10(-5) to 3.2 x 10(-5) M) to the medium 24 h after the UV-B exposure markedly and dose-dependently enhanced these cell responses. Confluent untreated cells, cells cocultured with PMA, and cells cocultured with PMA for 24 h after the UV-B exposure consistently expressed mRNAs for wild-type p53, bcl-2, and ICE. Expression of c-myc mRNA was initially observed, but became undetectable in the cells cocultured for 24 h with a high concentration of PMA (3.2 x 10(-5) M) following UV-B exposure. Such cells subsequently exhibited the maximal apoptotic response. We conclude that mild exposure to UV-B altered murine fibroblast cells in such a way as to facilitate their death by apoptosis upon addition of PMA.  相似文献   

15.
Platelet-derived growth factor (PDGF) and sphingosine 1-phosphate (S1P) act via PDGF beta receptor-S1P(1) receptor complexes in airway smooth muscle cells to promote mitogenic signaling. Several lines of evidence support this conclusion. First, both receptors were co-immunoprecipitated from cell lysates with specific anti-S1P(1) antibodies, indicating that they form a complex. Second, treatment of airway smooth muscle cells with PDGF stimulated the phosphorylation of p42/p44 MAPK, and this phosphorylated p42/p44 MAPK associates with the PDGF beta receptor-S1P(1) receptor complex. Third, treatment of cells with antisense S1P(1) receptor plasmid construct reduced the PDGF- and S1P-dependent activation of p42/p44 MAPK. Fourth, S1P and/or PDGF induced the formation of endocytic vesicles containing both PDGF beta receptors and S1P(1) receptors, which was required for activation of the p42/p44 MAPK pathway. PDGF does not induce the release of S1P, suggesting the absence of a sequential mechanism. However, sphingosine kinase 1 is constitutively exported from cells and supports activation of p42/p44 MAPK by exogenous sphingosine. Thus, the presentation of sphingosine from other cell types and its conversion to S1P by the kinase exported from airway smooth muscle cells might enable S1P to act with PDGF on the PDGF beta receptor-S1P(1) receptor complex to induce biological responses in vivo. These data provide further evidence for a novel mechanism for G-protein-coupled receptor and receptor tyrosine kinase signal integration that is distinct from the transactivation of receptor tyrosine kinases by G-protein-coupled receptor agonists and/or sequential release and action of S1P in response to PDGF.  相似文献   

16.
The cytoplasmic pH of human neutrophils was determined fluorometrically using carboxylated fluorescein derivatives. When normal neutrophils were activated by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) in Na+-containing medium, the cytoplasmic pH initially decreased but then returned to near normal values. In Na+-free media or in Na+ medium containing amiloride, TPA induced a marked monophasic intracellular acidification. The cytoplasmic acidification is associated with net H+ equivalent efflux, suggesting metabolic acid generation. The metabolic pathways responsible for the acidification were investigated by comparing normal to chronic granulomatous disease neutrophils. These cells are unable to oxidize NADPH and generate superoxide. When treated with TPA in Na+-free or amiloride-containing media, chronic granulomatous disease cells did not display a cytoplasmic acidification. This suggests that in normal cells NADPH oxidation and/or the accompanying activation of the hexose monophosphate shunt are linked to the acidification. Unlike normal neutrophils, chronic granulomatous disease cells treated with TPA in Na+-containing medium displayed a significant cytoplasmic alkalinization. The alkalinization was Na+-dependent and amiloride-sensitive, indicating activation of Na+/H+ exchange. Thus, the Na+/H+ antiport, which can be indirectly stimulated by the metabolic cytoplasmic acidification, is also directly activated by the phorbol ester.  相似文献   

17.
OBJECTIVES: The aim of the current study was to investigate whether nicotine treatment would induce the proliferation of isolated rat primary pancreatic acinar cells in culture by activating mitogen-activated protein kinase (MAPK) signalling and exocrine secretion. MATERIALS AND METHODS: A nicotine dose- and time-response curve was initially developed to determine the optimal dose and time used for all subsequent studies. Proliferation studies were conducted by cell counting and confirmed further by bromodeoxyuridine (BrdU) incorporation and flow cytometry assays. MAPK signalling studies were conducted by Western blot analysis. Localization of ERK1/2 signals, with or without nicotine and the MAPK inhibitor, was visualized by immunofluorescence. RESULTS: Nicotine treatment caused dose-dependent activation of extracellular signal-regulated kinases (ERK1/2), the maxima occurring at 100 micro m and at 3 min after treatment; the response was suppressed by the ERK1/2 inhibitor. Maximal nicotine-induced cell proliferation occurred at 24 h, and UO126-treatment significantly reduced this response. Exposure of cells to 100 microm nicotine for 6 min significantly enhanced both baseline and cholecystokinin-stimulated cell function, and these effects were not affected by treatment with the inhibitor of ERK1/2 but were suppressed by mecamylamine, a nicotinic receptor antagonist. CONCLUSIONS: Our results suggest that nicotine treatment induced cell proliferation of isolated pancreatic acinar cells and that this is coupled with the activation of MAPK signalling with no effect on its function. Hence, in primary cells, the mechanism of induction and regulation of these two processes, cell proliferation and cell function, by nicotine treatment are independent of each other.  相似文献   

18.
Insulin receptor substrates-1 and 2 (IRS-1 and IRS-2) are pivotal in relaying insulin signaling in insulin-responsive tissues such as muscle. However, the precise contribution of IRS-1 vis-a-vis IRS-2 in insulin-mediated metabolic and mitogenic responses has not been compared directly in differentiated muscle cells. This study aimed to determine the relative contribution of IRS-1 versus IRS-2 in these responses, using small interfering RNA (siRNA)-mediated specific gene silencing. In L6 myotubes, transfection of siRNA targeted specifically against IRS-1 (siIRS-1) or IRS-2 (siIRS-2) reduced the cognate protein expression by 70-75%. Insulin-induced ERK phosphorylation was much more sensitive to IRS-2 than IRS-1 ablation, whereas p38MAPK phosphorylation was reduced by 43 or 62% in myotubes treated with siIRS-1 or siIRS-2, respectively. Insulin-induced Akt1 and Akt2 phosphorylation was reduced in myotubes treated with siIRS-1, but only Akt2 phosphorylation was reduced in myotubes treated with siIRS-2. In contrast, siIRS-1 treatment caused a marked reduction in insulin-induced actin remodeling, glucose uptake, and GLUT4 translocation, and siIRS-2 was without effect on these responses. Notably, combined siIRS-1 and siIRS-2, although reducing each IRS by around 75%, caused no further drop in glucose uptake than that achieved with siIRS-1 alone, but abolished p38MAPK phosphorylation. We conclude that insulin-stimulated Akt1 phosphorylation, actin remodeling, GLUT4 translocation, and glucose uptake are regulated mainly by IRS-1, whereas IRS-2 contributes selectively to ERK signaling, and Akt2 and p38MAPK lie downstream of both IRS in muscle cells.  相似文献   

19.
Suspensions of dark-adapted guard cell protoplasts of Vicia faba L. alkalinized their medium in response to irradiation with red light. The alkalinization peaked within about 50 minutes and reached steady state shortly thereafter. Simultaneous measurements of O2 concentrations and medium pH showed that oxygen evolved in parallel with the red light-induced alkalinization. When the protoplasts were returned to darkness, they acidified their medium and consumed oxygen. Both oxygen evolution and medium alkalinization were inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). In photosynthetically competent preparations, light-dependent medium alkalinization is diagnostic for photosynthetic carbon fixation, indicating that guard cell chloroplasts have that capacity. The striking contrast between the responses of guard cell protoplasts to red light, which induces alkalinization, and that to blue light, which activates proton extrusion, suggests that proton pumping and photosynthesis in guard cells are regulated by light quality.  相似文献   

20.
In this study, we introduce the Micro-Electrode Ion Flux Estimation technique as a sensitive and accurate technique to study systemin-induced changes in ion fluxes from isolated nearly intact plant tissues. Our results demonstrate the effectiveness and value of the Micro-Electrode Ion Flux Estimation technique to monitor and characterize those elicitor-induced ion flux changes from intact tissues. We used the method to monitor the systemin-induced changes in ion fluxes from leaf tissue of various plant species, including wild-type and cu3 mutant tomato (Solanum pimpinellifolium) plants, and confirm previous observations, but now in intact leaf tissue. Upon exposure of leaf tissue of plant species from the subtribe solaneae to systemin, the H(+) influx and K(+) efflux were transiently strongly increased. Plant species of other clades did not show a response upon systemin exposure. Although it has been reported that the gene containing the cu3 null mutation is identical to the SR160/tBRI1 gene, which encodes the systemin/brassinosteroid receptor and is essential in systemin and brassinosteroid perception, we observed no differences in the response of H(+) and K(+) fluxes from both wild-type and mutant leaf tissue to systemin. Also, the effects of various pharmacological effectors on systemin-induced flux changes were similar. Moreover, a SR160/tBRI1 transgene-containing tobacco (Nicotiana tabacum) line was insensitive to systemin, whereas both this line and its wild-type predecessor were responsive to the elicitor flg22. Our results support the conclusion that the Cu3 receptor of tomato is not the systemin receptor, and, hence, another receptor is the principal systemin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号