首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Myosin light chain kinase which phosphorylates g2 light chain of skeletal muscle myosin requires an activator for the activity (Yazawa, M., and Yagi, K (1977) J. Biochem. (Tokyo) 82, 287-289). This activator has now been identified as the modulator protein known to be a Ca2+-dependent regulator for phosphodiesterase, adenylate cyclase, and ATPases. The identification is based on the quantitative cross-reactivity of muscle activator protein and brain modulator protein in activating myosin light chain kinase and brain phosphodiesterase and identical properties of both proteins in regard to sensitivities to Ca2+, UV absorption spectra, UV absorption difference spectra with or without Ca2+, and mobilities upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of modulator protein, the activity of myosin light chain kinase was reversibly controlled by the physiological concentration of Ca2+. We suggest that two Ca2+-receptive proteins, i.e. modulator protein and troponin-C, may play roles in the contraction-relaxation cycle of skeletal muscle.  相似文献   

2.
Calcium-dependent regulation of NAD kinase.   总被引:11,自引:0,他引:11  
An activator protein of NAD kinase from the pea, Pisumsatavum L., has been shown to be Ca2+-dependent. This plant activator protein also stimulates the activity of modulator protein dependent-cyclic nucleotide phosphodiesterase from porcine brain. This stimulation is similar to that observed with modulator protein isolated from animal sources. Furthermore, Ca2+-dependent modulator proteins isolated from porcine brain, bovine brain, and the coelenterate, Renilla, will regulate the NAD kinase activity of peas. Other common properties of the plant activator protein and animal modulator proteins are their acidic nature, heat stabilities, similar Stokes' radii, and their interactions with troponin I.  相似文献   

3.
Incubation of homogenates of rat renal cortex at 4 degrees resulted in increased cAMP phosphodiesterase activity; the increase was much more rapid in hypotonic medium than in one of physiological tonicity. cAMP phosphodiesterase activity did not increase with incubation of supernatant fractions (48,000 x g, 20 min) prepared from isotonic homogenates. Extraction of the isotonic particulate fraction with hypotonic buffer released an activator which increased cAMP phosphodiesterase activity of the supernatant fraction. The kidney phosphodiesterase activator differed from a heat-stable, calcium-dependent protein activator of phosphodiesterase in that it was destroyed by heating (90 degrees for 10 min) and was not inhibited by EGTA. The phosphodiesterases of rat renal cortex were partially resolved by chromatography on DEAE-Bio-Gel, and a cAMP phosphodiesterase that is sensitive to the kidney activator was identified. This phosphodiesterase was separable from that affected by a calcium-dependent phosphodiesterase activator from bovine brain and from cGMP-stimulated cAMP phosphodiesterase. As determined by sucrose density gradient centrifugation, after incubation with the kidney activator, the activated form of phosphodiesterase had a lower sedimentation velocity than did the unactivated form.  相似文献   

4.
We have examined the activity of cyclic AMP phosphodiesterase, cyclic GMP phosphodiesterase and the protein activator of cyclic AMP phosphodiesterase in various anatomic and subcellular fractions of the bovine eye. Cyclic GMP hydrolysis was 1.6--12 times faster than hydrolysis of cyclic AMP in the subcellular fractions of the retina and in the precipitate of the rod outer segment. An opposite pattern was seen in the bovine lens, where the hyrolysis of cyclic AMP occurred 17 and 169 times faster than that of cyclic GMP in the supernatant and precipitate of lens, respectively. The activity of cyclic AMP phosphodiesterase was not affected by ethylene-glycol bis(beta-aminoethylether)-N,N'-tetraacetic acid in any fractions except in the retinal supernatant, suggesting that the phosphodiesterase exists primarily as a Ca2+-independent, activator-independent form. However, the protein activator of cyclic AMP phosphodiesterase existed in all fractions examine. A complex kinetic patternwas observed for both cyclic AMP and cyllic GMP hydrolysis by the 105000 times g lens supernatant. The Michaelis constants for both cyclic AMP (1.3-10(-6) and 9.I-10(-6) M) and cyclic GMP (1.04-10(6) AND 1.22 10(-5) M) appeared to be similar.  相似文献   

5.
Cyclic nucleotide phosphodiesterase was examined in canine and bovine superior cervical ganglia. Activity in crude supernatant fractions was only slightly stimulated by Ca++ despite the presence of protein activating factor. Three forms of phosphodiesterase were resolved from bovine ganglia supernatant extracts by chromatography on DEAE-cellulose. The first enzyme eluted, (DI), was almost completely specific for cyclic GMP, while the other two (DII and DIII), hydrolyzed both cyclic AMP and cyclic GMP; all were free of heat-stable protein activator. Each enzyme was inhibited by low concentrations of Ca++ in the assay medium. Inhibition by Ca++ was reversed by addition of protein activator, but activity did not increase above the control level. Cyclic AMP hydrolysis by enzyme DII was stimulated by micromolar concentrations of cyclic GMP. This stimulation was reduced by Ca++ unless protein activator was present.  相似文献   

6.
Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175–4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain.  相似文献   

7.
Bovine or rat brain adenylate cyclase (EC 4.6.1.1) solubilized by Lubrol PX contained an activator which was separated from the enzyme by an anionic exchange resin column. Dissociation of the activator from adenylate cyclase rendered the enzyme less active, and reconstituting with an exogenous activator restored full enzyme activity. A pure protein activator of cyclic 3′:5′-nucleotide phosphodiesterase (EC 3.1.4.17) isolated from bovine brain also stimulated this adenylate cyclase. Stimulation of adenylate cyclase by the activator required Ca++, the effect being immediate and reversible. Although the activator was specific, it lacked tissue specificity; an activator isolated from bovine brain cross-activated effectively adenylate cyclase from rat, and vice versa. These findings indicate that brain adenylate cyclase required an activator for activity and that this activator is functionally identical to the protein activator of phosphodiesterase (J.B.C. 249: 4943–4954, 1974).  相似文献   

8.
A Ca2+-binding protein which is capable of activating mammalian Ca2+-activatable cyclic nucleotide phosphodiesterase has been purified from Lumbricus terrestris and characterized. This protein and the Ca2+-dependent protein modulator from bovine tissues have many similar properties. Both proteins have molecular weights of approximately 18,000, isoelectric points of about pH 4, similar and characteristic ultraviolet spectra, and similar amino acid compositions. Both proteins bind calcium ions with high affinity. However, the protein from Lumbricus terrestris binds 2 mol of calcium ions with equal affinity, Kdiss = 6 X 10(-6) M, whereas the Ca2+-dependent protein modulator from bovine tissues binds 4 mol of calcium ions with differing affinities. Although the Ca2+-binding protein of Lumbricus terrestris activates the Ca2+-activatable cyclic nucleotide phosphodiesterase from mammalian tissues, we have failed to detect the existence of a Ca2+-activatable phosphodiesterase activity in Lumbricus terrestris. The activation of phosphodiesterase by the Ca2+-binding protein from Lumbricus terrestris is inhibited by the recently discovered bovine brain modulator binding protein (Wang, J. H., and Desai, R. (1977) J. Biol. Chem. 252, 4175-4184). Since the modulator binding protein has been shown to associate with the mammalian protein modulator to result in phosphodiesterase inhibition, it can be concluded that the Lumbricus terrestris Ca2+-binding protein also associates with the bovine brain modulator binding protein. Attempts to demonstrate the existence of a similar modulator binding protein in Lumbricus terrestris have been unsuccessful.  相似文献   

9.
Previously, the guanylate cyclase activity of Tetrahymena pyriformis was shown to be activated by an endogenous modulator (calmodulin)-like protein (Na-gao, S., Suzuki, Y., Watanabe, Y., and Nozawa, Y. (1979) Biochem. Biophys. Res. Commun. 90, 261-268). This protein has now been identified as the modulator protein. The identification was based on the capability of this protein to activate the brain modulator-deficient phosphodiesterase and the mobility of this protein upon polyacrylamide gel electrophoresis. The activation of guanylate cyclase was specifically attributable to the Tetrahymena modulator protein since other modulator proteins examined (bovine brain, sea anemone, and scallop) were ineffective. Under the conditions where the activation of Tetrahymena guanylate cyclase occurred, guanylate cyclase activities from other sources, that include rat brain, rat lung, and human platelet, were not affected. In the phosphodiesterase activation, the potencies of scallop and Tetrahymena modulator proteins, which are represented by reciprocals of the quantities of proteins required for half-maximal activation of enzyme, were 66% and 55%, respectively, of that of the brain protein. The same decreasing order was seen for the affinity of these proteins for Ca2+ in enzyme activation. The results suggest a directional change of the modulator protein during the molecular evolution toward an increase in the capability in Ca2+-dependent enzyme activation.  相似文献   

10.
A Ca2+-activatable cyclic nucleotide phosphodiesterase from bovine heart can be eluted from a DEAE-cellulose column either in the free form by buffers containing 0.1 mM ethylene glycol bis(beta-aminoethyl ether)N-N,N'N'-tetraacetic acid (EGTA) or as a complex of the enzyme with its protein modulator by buffers containing 0.01 mM CaCl2. A purification procedure based primarily on the significantly different affinity of the two forms of the enzyme for DEAE-cellulose was developed for the purification of the enzyme from bovine heart. The procedure involves ammonium sulfate fractionation, three chromatographic steps on DEAE-cellulose, and gel filtration on Sephadex G-200 with a 5000-fold purification over the crude extract. The purified enzyme has a specific activity of 120 mumol of cAMP/mg/min, can be activated 5-fold by Ca2+, but is only 80% pure as judged by analytical disc gel electrophoresis. The purified enzyme is unstable but can be stabilized by addition of Ca2+ and the protein modulator; this is in contrast to the less pure preparations of Ca2+-activatable phosphodiesterase which are destabilized by the protein modulator in the presence of Ca2+.  相似文献   

11.
The purified catalytic subunit (C) of cAMP-dependent protein kinase produced a 2-fold activation of the low Km phosphodiesterase in crude microsomes (P-2 pellet) of rat adipocytes. This activation was C subunit concentration-dependent, ATP-dependent, blocked by a specific peptide inhibitor, and lost if the C subunit was first heat denatured. The concentration of ATP necessary for half-maximal activation of the low Km phosphodiesterase was 4.50 +/- 1.1 microM, which was nearly the same as the known Km of C subunit for ATP (3.1 microM) using other substrates. The concentration of C subunit producing half-maximal activation of phosphodiesterase was 0.22 +/- 0.04 microM, slightly less than the measured concentration of total C subunit in adipocytes (0.45 microM). The activation of the low Km phosphodiesterase by C subunit was specific, since on an equimolar basis, myosin light chain kinase, cGMP-dependent protein kinase, or Ca2+/calmodulin-dependent protein kinase II did not activate the enzyme. The percent stimulation of phosphodiesterase by C subunit was about the same as that produced by incubation of adipocytes with a cAMP analog, and the enzyme first activated in vivo with the analog was not activated to the same extent (on a percentage basis) by in vitro treatment with C subunit. Treatment of the crude microsomes with trypsin resulted in transfer of phosphodiesterase catalytic activity from the particulate to the supernatant fraction, but the enzyme in the supernatant was minimally activated by C subunit, suggesting either loss or dislocation of the regulatory component. The C subunit-mediated activation of phosphodiesterase was preserved after either transfer of phosphodiesterase activity to the supernatant fraction by nonionic detergents or partial purification of the transferred enzyme. The present findings are consistent with the suggestion that protein kinase regulates the concentration of cAMP through phosphodiesterase activation and provide direct evidence that the mechanism of activation involves phosphorylation.  相似文献   

12.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was minimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phoshodiesterase activity.  相似文献   

13.
1. A heat-stable modulator protein was partially purified from mouse epidermis. The protein stimulated modulator-depleted cyclic AMP phosphodiesterase from bovine brain in the presence of Ca2+. 2. DEAE-cellulose chromatography of epidermal extracts demonstrated the presence of two main phosphodiesterase activities that hydrolysed both cyclic AMP and cyclic GMP. A minor peak was eluted between 0.1 and 0.3 M-sodium acetate and a major peak was eluted between 0.3 and 0.45 M-sodium acetate. 3. Cyclic AMP phosphodiesterase activity eluted at low salt concentrations was markedly activated by the epidermal modulator protein in the presence of Ca2+. Storage of the enzyme led to a decrease in its sensitivity to the protein modulator. 4. Treatment of mouse skin with the tumour promoter 12-O-tetradecanoylphorbol 13-acetate, which leads to an increase in epidermal cyclic nucleotide phosphodiesterase activity, did not alter the amount of modulator present in soluble epidermal extracts. The tumour promoter decreased the amount of modulator extractable from particulate epidermal preparations with Triton X-100.  相似文献   

14.
The recently discovered heat-stable inhibitor protein of the Ca2+-activated cyclic nucleotide phosphodiesterase (Sharma, R. K., Wirch, E. & Warg, J. H. (1978) J. Biol. Chem., in press) has been purified 238 214-fold from bovine brain extract using an affinity column of the modulator protein--Sepharose 4B conjugate. The purified sample appears to be homogeneous as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The protein band has a mobility corresponding to that of a polypeptide of molecular weight 68 000. Since the heat-stable inhibitor protein has a molecular weight of 70 000 under nondenaturing conditions, it suggests that it is a monomeric protein. The protein has no inhibitory activity toward the cAMP-dependent protein kinase or protein phosphatase. The purified sample has been tested for various enzyme activities which include ATPase, GTPase, cAMP phosphodiesterase, cGMP phosphodiesterase, 5'-nucleotidase, and protein kinase. None of these activities are exhibited by the purified sample.  相似文献   

15.
An inhibitor protein of cyclic nucleotide phosphodiesterase is demonstrated in bovine brain extract and separated from modulator binding protein, a recently discovered inhibitory factor of phosphodiesterase. The new inhibitor protein is similar to the cyclic AMP phosphodiesterase inhibitor from bovine retina (Dumler, I. L., and Etingof, F. N. 1976) Biochim. Biophys, Acta 429, 474-484) in its heat stability: it retains full activity upon heating in a boiling water bath for 2 min. The new inhibitor protein counteracts the activation of the Ca2+-activatable cyclic nucleotide phosphodiesterase by the Ca2+-dependent modulator protein without affecting the basal activity of the enzyme. The inhibition of phosphodiesterase by the inhibitor can be reversed by high concentrations of modulator protein but is not influenced by a 20-fold increase in Ca2+ concentration. In contrast, a Ca2+-independent form of cyclic nucleotide phosphodiesterase is not inhibited by the inhibitor protein. These results suggest that the heat-stable inhibitor protein is specific against the action of the Ca2+-dependent modulator protein. Gel filtration analyses on Sephadex G-75 and G-100 columns have shown that the inhibitor protein and the modulator protein may associate in the presence of Ca2+. The molecular weights determined by the gel filtration for the free inhibitor protein and the complex of the inhibitor and modulator protein are about 70,000 and 85,000, respectively.  相似文献   

16.
Phosphodiesterase activator protein has been purified from bovine brain and its properties compared with that of bovine heart troponin C. While both proteins activate ‘activator depleted phosphodiesterase’ in the presence of Ca2+, a 200-fold greater concentration of troponin C was necessary and the maximal effect was less than that with the activator protein. The activator protein formed a Ca2+ -dependent complex with bovine heart troponin I during electrophoresis in 6 M urea-polyacrylamide gel. However, the mobility of this complex was different from that of troponin C · troponin I complex and the affinity between troponin C and troponin I was much stronger than that between the activator protein and troponin I. Ca2+ induced changes in the electrophoretic mobility of activator protein and the pattern of its elution during gel filtration which were similar to the Ca2+-dependent conformational changes observed with troponin C. Bovine heart troponin I reduced basal, troponin C and the activator protein stimulation of phosphodiesterase activity. These results are compatible with the concept that phosphodiesterase activator protein and troponin C might have a functional relationship.  相似文献   

17.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was mimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phosphodiesterase activity.  相似文献   

18.
We have purified and partly characterized a calcium-binding protein from the unfertilized egg of the sea urchin Arbacia punctulata. This protein closely resembles the calcium-binding modulator protein of bovine brain in its molecular weight, electrophoretic mobility, amino acid analysis, and peptide map. It activates bovine brain phosphodiesterase in the presence of calcium but has no effect on the phosphodiesterase of the Arbacia egg. Densitometric scanning of acrylamide gels of arbacia egg homogenates shows the modulator protein to represent 0.1% of the total protein of the egg. At 10(-4) M free calcium, the protein binds four calcium ions per 17,000-dalton molecule. We have used a column of rabbit skeletal muscle troponin-I covalently coupled to Sepharose 4B as an affinity column to selectively purify the Arbacia egg calcium-binding protein. This column has also been used to purify bovine brain modulator protein and may prove of general use in isolating similar proteins from other sources. The technique may be particularly helpful when only small quantities of starting material are available.  相似文献   

19.
Protein activator of cyclic nucleotide phosphodiesterase from bovine brain (9 μg/0.5 ml) was found to stimulate ATP-dependent Ca2+ - transport in dog cardiac microsomal preparations enriched in sarcoplasmic reticulum. Both oxalate-dependent calcium uptake and ATP-dependent calcium binding were increased. Cyclic AMP-dependent protein kinase (Sigma, type 1, 25 μg/0.5 ml) and cyclic AMP (1 μM) also stimulated calcium uptake and the presence of a maximal stimulatory concentration of the phosphodiesterase activator produced an additive elevation of calcium uptake indicating separate mechanisms of action and potentially different modulatory roles for these two systems in the control of calcium transport.  相似文献   

20.
A calmodulin-stimulated form of cyclic nucleotide phosphodiesterase from bovine brain has been extensively purified (1000-fold). Its specific activity is approximately 4 mumol min-1 (mg of protein)-1 when 1 microM cGMP is used as the substrate. This form of calmodulin-sensitive phosphodiesterase activity differs from those purified previously by showing a very low maximum hydrolytic rate for cAMP vs. cGMP. The purification procedure utilizing ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephacryl S-300, isoelectric focusing, and affinity chromatography on calmodulin-Sepharose and Cibacron blue-agarose results in a protein with greater than 80% purity with 1% yield. Kinetics of cGMP and cAMP hydrolysis are linear with Km values of 5 and 15 microM, respectively. Addition of calcium and calmodulin reduces the apparent Km for cGMP to 2-3 microM and increases the Vmax by 10-fold. cAMP hydrolysis shows a similar increase in Vmax with an apparent doubling of Km. Both substrates show competitive inhibition with Ki's close to their relative Km values. Highly purified preparations of the enzyme contain a major protein band of Mr 74 000 that best correlates with enzyme activity. Proteins of Mr 59 000 and Mr 46 000 contaminate some preparations to varying degrees. An apparent molecular weight of 150 000 by gel filtration suggests that the enzyme exists as a dimer of Mr 74 000 subunits. Phosphorylation of the enzyme preparation by cAMP-dependent protein kinase did not alter the kinetic or calmodulin binding properties of the enzyme. Western immunoblot analysis indicated no cross-reactivity between the bovine brain calmodulin-stimulated gGMP phosphodiesterase and the Mr 60 000 high-affinity cAMP phosphodiesterase present in most mammalian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号