首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Estimates of the Lyapunov exponent, a statistic that measures the sensitive dependence of the dynamic behaviour of a system on its initial conditions, are used to characterize several sets of insect time series.
2. A new method is described to overcome the difficulty of defining the dynamics of an observed, noisy, short ecological time series. This method provides two test statistics for the estimated Lyapunov exponent.
3. This method is applied to forty-six time series comprising six aphid species from five sites and four moth species from six sites. There are few positive Lyapunov exponents and none is sufficiently large to characterize its time series as chaotic.
4. Two methods to estimate the Lyapunov exponent are compared; that based on logarithmically transformed counts yields less variable estimates for highly variable insect data than that based on untransformed counts.  相似文献   

3.
Clinical gait analysis provides great contributions to the understanding of gait patterns. However, a complete distribution of muscle forces throughout the gait cycle is a current challenge for many researchers. Two techniques are often used to estimate muscle forces: inverse dynamics with static optimization and computer muscle control that uses forward dynamics to minimize tracking. The first method often involves limitations due to changing muscle dynamics and possible signal artefacts that depend on day-to-day variation in the position of electromyographic (EMG) electrodes. Nevertheless, in clinical gait analysis, the method of inverse dynamics is a fundamental and commonly used computational procedure to calculate the force and torque reactions at various body joints. Our aim was to develop a generic musculoskeletal model that could be able to be applied in the clinical setting. The musculoskeletal model of the lower limb presents a simulation for the EMG data to address the common limitations of these techniques. This model presents a new point of view from the inverse dynamics used on clinical gait analysis, including the EMG information, and shows a similar performance to another model available in the OpenSim software. The main problem of these methods to achieve a correct muscle coordination is the lack of complete EMG data for all muscles modelled. We present a technique that simulates the EMG activity and presents a good correlation with the muscle forces throughout the gait cycle. Also, this method showed great similarities whit the real EMG data recorded from the subjects doing the same movement.  相似文献   

4.
《IRBM》2008,29(4):239-244
ObjectivesThe electroencephalogram (EEG) signal contains information about the state and condition of the brain. The aim of the study is to conduct a nonlinear analysis of the EEG signals and to compare the differences in the nonlinear characteristics of the EEG during normal state and the epileptic state.DataThe EEG data used for this study – which consisted of epileptic EEG and normal EEG – were obtained from the EEG database available with the Bonn University, Germany.ResultsThe attractors seen in normal and epileptic human brain dynamics were studied and compared. Surrogate data analyses were conducted on two nonlinear measures, namely the largest Lyapunov exponent and the correlation dimension, to test the hypothesis whether EEG signals were in accordance with linear stochastic models.DiscussionsThe existence of deterministic chaos in brain activity is confirmed by the existence of a chaotic attractor; also, saturation of the correlation dimension towards a definite value is the manifestation of a deterministic dynamics. Also a reduction is observed between the dimensionalities of the brain attractors from normal state to the epileptic state. The evaluation of the largest Lyapunov exponent also confirms the lowering of complexity during an episode of seizure.ConclusionIn case of Lyapunov exponent of EEG data, the change due to surrogating is small suggesting that it is not representing the system complexity properly but there is a marked change in the case of correlation dimension value due to surrogating.  相似文献   

5.
We report on the nonlinear analysis of electroencephalogram (EEG) recordings in the rabbit visual cortex. Epileptic seizures were induced by local penicillin application and triggered by visual stimulation. The analysis procedures for nonlinear signals have been developed over the past few years and applied primarily to physical systems. This is an early application to biological systems and the first to EEG data. We find that during epileptic activity, both global and local embedding dimensions are reduced with respect to nonepileptic activity. Interestingly, these values are very low () and do not change between preictal and tonic stages of epileptic activity, also the Lyapunov dimension remains constant. However, between these two stages the manifestations of the local dynamics change quite drastically, as can be seen, e.g., from the shape of the attractors. Furthermore, the largest Lyapunov exponent is reduced by a factor of about two in the second stage and characterizes the difference in dynamics. Thus, the occurrence of clinical symptoms associated with the tonic seizure activity seems to be mainly related to the local dynamics of the nonlinear system. These results thus seem to give a strong indication that the dynamics remains much the same in these stages of behavior, and changes are due to alterations in model parameters and consequent bifurcations of the observed orbits. Received: 5 February 1997 / Accepted in revised form: 18 September 1997  相似文献   

6.
Increasingly complex models of the neck neuromusculature need detailed muscle and kinematic data for proper validation. The goal of this study was to measure the electromyographic activity of superficial and deep neck muscles during tasks involving isometric, voluntary, and reflexively evoked contractions of the neck muscles. Three male subjects (28-41 years) had electromyographic (EMG) fine wires inserted into the left sternocleidomastoid, levator scapulae, trapezius, splenius capitis, semispinalis capitis, semispinalis cervicis, and multifidus muscles. Surface electrodes were placed over the left sternohyoid muscle. Subjects then performed: (i) maximal voluntary contractions (MVCs) in the eight directions (45 deg intervals) from the neutral posture; (ii) 50 N isometric contractions with a slow sweep of the force direction through 720 deg; (iii) voluntary oscillatory head movements in flexion and extension; and (iv) initially relaxed reflex muscle activations to a forward acceleration while seated on a sled. Isometric contractions were performed against an overhead load cell and movement dynamics were measured using six-axis accelerometry on the head and torso. In all three subjects, the two anterior neck muscles had similar preferred activation directions and acted synergistically in both dynamic tasks. With the exception of splenius capitis, the posterior and posterolateral neck muscles also showed consistent activation directions and acted synergistically during the voluntary motions, but not during the sled perturbations. These findings suggest that the common numerical-modeling assumption that all anterior muscles act synergistically as flexors is reasonable, but that the related assumption that all posterior muscles act synergistically as extensors is not. Despite the small number of subjects, the data presented here can be used to inform and validate a neck model at three levels of increasing neuromuscular-kinematic complexity: muscles generating forces with no movement, muscles generating forces and causing movement, and muscles generating forces in response to induced movement. These increasingly complex data sets will allow researchers to incrementally tune their neck models' muscle geometry, physiology, and feedforward/feedback neuromechanics.  相似文献   

7.
Tennis Elbow or Lateral Epicondylalgia is manifested by pain over the region of the lateral epicondyle of the humerus, related to use of the wrist extensor muscles. Extensor carpi radialis longus (ECRL) and brevis (ECRB) have been implicated in the dysfunction associated with Lateral Epicondylalgia. For muscles in the human forearm, particularly those in close proximity, selective recordings are nearly impossible without the use of fine wire, indwelling electrodes. These can be inserted in precise locations and have small recording areas. Standard electromyography texts indicate, however, that the activity of ECRL and ECRB cannot be distinguished, even with intramuscular electrodes. We present a new technique for determining the most appropriate sites at which to insert intramuscular electrodes for selective recordings of ECRB and ECRL. The location of ECRB and ECRL was measured on 10 cadaver specimens, 5 right arms and 5 left arms. The distance from the muscle origin to (1) insertion, (2) largest portion of the muscle belly, (3) most proximal fibres and (4) most distal fibres were measured and expressed relative to forearm length. The mean distance and 95% confidence interval was calculated for each of the four measures. These data indicated a significant separation of the belly of each muscle along the length of the forearm. These relative distances were used to mark electrode insertion points on three volunteers. Fine wire electrodes were used to record the electromyogram in three participants. Each participant was required to perform isometric contractions to produce (1) wrist extension torque, (2) radial deviation torque, (3) elbow flexion torque and (4) finger extension. The electromyographic recordings show clear differentiation of ECRB and ECRL with the relative activation patterns reflecting the underlying anatomical organisation of the two muscles. This technique provides an important objective method that can be used in conjunction with manual muscle testing to provide a means of ensuring accurate intramuscular electromyographic recording from these two muscles.  相似文献   

8.
SUMMARY: The authors evaluated rectus abdominis muscle function after deep inferior epigastric perforator (DIEP) flap elevation. Fifteen consecutive patients who were operated on for breast reconstruction with a free DIEP flap were included in the study. A turn-amplitude electromyographic analysis was used. For each patient, the muscle activity was recorded in the portion of the muscle that was split for the epigastric perforator vessel dissection, and also in the similar portion of the contralateral nondissected muscle. A first electromyographic examination was carried out soon after surgery (mean follow-up, 9 weeks), and a second electromyographic examination was carried out at a later date (mean follow-up, 15 months). The mean activity of the dissected muscles was 50 percent of the activity of the nondissected muscles at the first electromyographic examination and 70 percent at the second electromyographic examination. The authors suggest that the DIEP flap procedure induces a partial denervation of the rectus abdominis muscle in the area of dissection and that reinnervation occurs over time because the entire width of the muscle and sufficient segmental motor innervation are preserved.  相似文献   

9.
A phenomenological theory of muscle dynamics has been elaborated on the basis of data obtained in experiments on hind limb extensor muscles of narcotized cat. Functional dependence of muscle length on external load was explored in conditions of a constant frequency of the efferent stimulation. It was shown that the system under study could be presented for a rather wide class of input signals as a system with nonlinear statics and linear dynamics. The nonlinear statics was shown to be determined mainly by the hysteretical effects of muscle contraction, whereas dynamic element was described by the first order linear differential equation corresponding to the traditional three-component mechanical model of the muscle. A hypothesis was proposed to explain the hysteresis in active muscle on the basis of functioning of the troponin-tropomyosin regulatory complex. Elaborated mathematical model of muscle dynamics can be used to predict and evaluate changes in the muscle length evoked by arbitrary changes in the external load.  相似文献   

10.
The aim of the study was to investigate whether there was a difference in the electromyographic (EMG) activity of human shoulder muscles between the dominant and nondominant side during movement and to explore whether a possible side-difference depends on the specific task. We compared the EMG activity with surface and intramuscular electrodes in eight muscles of both shoulders in 20 healthy subjects whose hand preference was evaluated using a standard questionnaire. EMG signals were recorded during abduction and external rotation. During abduction, the normalized EMG activity was significantly smaller on the dominant side compared to the nondominant side for all the muscles except for infraspinatus and lower trapezius (P 相似文献   

11.
Force exertion against different mechanical environments can affect motor control strategies in order to account for the altered environmental dynamics and to maintain the ability to produce force. Here, we investigated the change of muscular activity of selected muscles of the lower extremities while the participants interacted with an external mechanical device of variable stability. Twenty-five healthy participants exerted force against the device by performing a unilateral ballistic leg extension task under 1 or 3 degrees of freedom (DoF). Directional force data and electromyographic responses from four leg muscles (TA, VM, GM, PL) were recorded. Muscle responses to the altered experimental conditions were analyzed by calculating time to peak electrical activity (TTP), peak electrical activity (PEA), slope of EMG-signal and muscle activity. It was found that neuromuscular system adjustments to the task are expressed mainly by temporal (TTP) rather than amplitude (PEA) scaling of muscular activity. This change was specific for the investigated muscles. Moreover, a selective increase of muscle activity occurred while increasing external DoF. This scheme was accompanied by a significant reduction of applicable force against the device in the unstable 3 DoF condition. The findings suggest that orchestration of movement control is linked to environmental dynamics also affecting the ability to produce force under dynamic conditions. The adjustments of the neuromuscular system are rather temporal in nature being consistent with the impulse timing hypothesis of motor control.  相似文献   

12.
To explore the mechanisms of speech articulation, which is one of the most sophisticated human motor skills controlled by the central nervous system, we investigated the force-generation dynamics of the human speech articulator muscles [orbicularis oris superior (OOS) and inferior (OOI) muscles of the lips]. Short-pulse electrical stimulation (300 micros) with approximately three or four times the sensation threshold intensity of each subject induced the muscle response. The responses of these muscles were modeled as second-order dynamics with a time delay (TD), and the model parameters [natural frequency (NF), damping ratio (DR), and TD] were identified with a nonlinear least mean squares method. The OOS (NF: 6.1 Hz, DR: 0.71, TD: 14.5 ms) and OOI (NF: 6.1 Hz, DR: 0.68, TD: 15.6 ms) showed roughly similar characteristics in eight subjects. The dynamics in the tongue (generated by combined muscles) also showed similar characteristics (NF: 6.1 Hz, DR: 0.68, TD: 17.4 ms) in two subjects. The NF was higher, and the DR was lower than results measured for arm muscles (NF: 4.25 Hz, DR: 1.05, TD: 23.8 ms for triceps long head), indicating that articulatory organs adapt for more rapid movement. In contrast, slower response dynamics was estimated when muscle force data by voluntarily contraction task were used for force-generation dynamics modeling. We discuss methodological problems in estimating muscle dynamics when different kinds of muscle contraction methods are used.  相似文献   

13.
We use nonlinear time series analysis methods to analyse the dynamics of the sound-producing apparatus of the katydid Neoconocephalus robustus. We capture the dynamics by analysing a recording of the singing activity. First, we reconstruct the phase space from the sound recording and test it against determinism and stationarity. After confirming determinism and stationarity, we show that the maximal Lyapunov exponent of the series is positive, which is a strong indicator for the chaotic behaviour of the system. We discuss that methods of nonlinear time series analysis can yield instructive insights and foster the understanding of acoustic communication among insects.  相似文献   

14.
Cerebral palsy is a condition that results in varying degrees of functional deficits. The goal of this study was to develop an objective measure of muscle activity during a prescribed voluntary motor task in non-ambulatory children with spastic cerebral palsy. While performing a simultaneous hip/knee flexion task from the supine position, followed by return to the starting position, electromyographic and kinematic data were obtained from the right leg of eight children before and after selective dorsal rhizotomy and compared with eight age-matched controls. The electromyographic and kinematic data were combined to determine for each muscle of interest (tibialis anterior, soleus, vastus lateralis, biceps femoris) the percentage of the movement cycle for which the muscle was acting concentrically, eccentrically, isometrically or was considered inactive. Averaged over the four muscles, isometric activity decreased by 38% post-op and the time the muscles were inactive increased by 37% following surgery. The percentages of concentric and eccentric activity did not differ significantly between pre- and post-op conditions. Post-operatively, the percentage muscle activity patterns of the children with cerebral palsy more closely resembled that of the control children: averaged across all muscles and contraction types, the difference between the control children and the children with cerebral palsy was reduced by 50% following surgery. This measurement technique indicates promise as a method for quantifying muscle activity during voluntary motor tasks in non-ambulatory children with cerebral palsy.  相似文献   

15.
Musculoskeletal models are made to reflect the capacities of the human body in general, and often a specific subject in particular. It remains challenging to both model the musculoskeletal system and then fit the modelled muscles to a specific human subject. We present a reduced muscle model, a planar musculoskeletal model, and a fitting method that can be used to find a feasible set of active and passive muscle parameters for a specific subject. At a minimum, the fitting method requires inverse dynamics data of the subject, a scalar estimate of the peak activation reached during the movement, and a plausible initial estimate for the strength and flexibility of that subject. While additional data can be used to result in a more accurate fit, this data is not required for the method solve for a feasible fit. The minimal input requirements of the proposed fitting method make it well suited for subjects who cannot undergo a maximum voluntary contraction trial, or for whom recording electromyographic data is not possible. To evaluate the model and fitting method we adjust the musculoskeletal model so that it can perform an experimentally recorded stoop-lift of a 15 kg box.  相似文献   

16.
17.
Advanced data analysis and visualization methodologies have played an important role in making surface electromyography both a valuable diagnostic methodology of neuromuscular disorders and a robust brain–machine interface, usable as a simple interface for prosthesis control, arm movement analysis, stiffness control, gait analysis, etc. But for diagnostic purposes, as well as for interfaces where the activation of single muscles is of interest, surface EMG suffers from severe crosstalk between deep and superficial muscle activation, making the reliable detection of the source of the signal, as well as reliable quantification of deeper muscle activation, prohibitively difficult. To address these issues we present a novel approach for processing surface electromyographic data. Our approach enables the reconstruction of 3D muscular activity location, making the depth of muscular activity directly visible. This is even possible when deep muscles are overlaid with superficial muscles, such as seen in the human forearm. The method, which we call imaging EMG (iEMG), is based on using the crosstalk between a sufficiently large number of surface electromyographic electrodes to reconstruct the 3D generating electrical potential distribution within a given area. Our results are validated by in vivo measurements of iEMG and ultrasound on the human forearm.  相似文献   

18.
Digital data characterizing the geometry of anatomic structures (e.g., bones, muscles and tendons) are becoming readily available from Magnetic Resonance Imaging and Computerized Tomography technology. These data can be useful in forward simulations of limb dynamics to study the interaction between tissue morphology and limb dynamics, but only if computational tools are available to manipulate these data to simulate various structural changes. The objective of this project was to develop a computational approach to simulate physiological changes in muscle volume and limb cross-section. A previously reported method for calculating the area and area centroid location of complex shapes was combined with a newly derived algorithm that simulates muscle hypertrophy or atrophy. The new algorithm modifies the cross-sectional areas of specified muscles and the spatial orientation of other muscles, as appropriate, to simulate desired muscle volume changes. An approach of this type is needed to facilitate musculoskeletal modeling and computer simulations of movement designed to address questions related to the interactions between muscle morphology, limb inertial properties and limb dynamics.  相似文献   

19.
Measures of nonlinearity and complexity, and in particular the study of Lyapunov exponents, have been increasingly used to characterize dynamical properties of a wide range of biological nonlinear systems, including cardiovascular control. In this work, we present a novel methodology able to effectively estimate the Lyapunov spectrum of a series of stochastic events in an instantaneous fashion. The paradigm relies on a novel point-process high-order nonlinear model of the event series dynamics. The long-term information is taken into account by expanding the linear, quadratic, and cubic Wiener-Volterra kernels with the orthonormal Laguerre basis functions. Applications to synthetic data such as the Hénon map and Rössler attractor, as well as two experimental heartbeat interval datasets (i.e., healthy subjects undergoing postural changes and patients with severe cardiac heart failure), focus on estimation and tracking of the Instantaneous Dominant Lyapunov Exponent (IDLE). The novel cardiovascular assessment demonstrates that our method is able to effectively and instantaneously track the nonlinear autonomic control dynamics, allowing for complexity variability estimations.  相似文献   

20.
The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers.Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号