首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to analyze the effect of a single irradiation on chemokine gene expression in the rat liver and in isolated rat hepatocytes. RNA extracted from livers and from hepatocytes within the first 48 h after irradiation was analyzed by real-time PCR and the Northern blot assay. The chemokine concentrations in the serum of irradiated rats were measured quantitatively by ELISA. A significant radiation-induced increase of CINC1, IP10, MCP1, MIP3alpha, MIP3beta, MIG and ITAC gene expression could be detected at the RNA level in the liver. CINC1, MCP1 and IP10 serum levels were significantly increased. In rat hepatocytes in vitro, only MIP3alpha showed a radiation-induced increase in expression, while CINC1, IP10, MIP3beta, MIG, MIP1alpha, ITAC and SDF1 RNA levels were significantly down-regulated. However, incubation of irradiated hepatocytes in vitro with either TNF-alpha, IL1beta, or IL6 plus TNF-alpha led to up-regulation of MCP1, IP10 and MCP1 or CINC1 and MIP3beta, respectively. Irradiation of the liver induces up-regulation of the genes of the main proinflammatory chemokines, probably through the action of locally synthesized proinflammatory cytokines. The reason for the lack of liver inflammation in this model has still to be clarified.  相似文献   

2.
利用cDNA微阵列分离津田芜菁花青素生物合成相关基因   总被引:2,自引:0,他引:2  
许志茹  李玉花 《遗传》2006,28(9):1101-1106
花色素苷是植物的重要次生代谢产物, 在植物体内行使多种生理功能。利用UV-A处理48 h后津田芜菁块根变红, 以黑暗处理条件下的白色块根为对照, 与削减文库特异基因片段制备的cDNA微阵列进行杂交。UV-A处理条件下津田芜菁中表达上调的基因为81个, 表达下调的基因为47个, 表达上调的基因中包括与花青素生物合成直接相关的基因片段cytochrome P450, PAL, F3H, ANS, CHS, DFR和GST等。Northern杂交结果显示, UV-A处理48 h的津田芜菁试材中, PAL、CHS、F3H、DFR和ANS基因的表达量明显高于黑暗条件下白色块根中这些基因的表达量, 进一步验证了芯片杂交结果的可靠性。  相似文献   

3.
4.
In vivo nitric oxide (NO) formation was quantified in mice after exposure to high-dose whole-body X-ray irradiation. NO produced and accumulated in the livers of irradiated mice was determined using NO trapping method with iron-dithiocarbamate complex combined with electron paramagnetic resonance (EPR) spectroscopy. When mice were irradiated with 50 Gy X-ray, NO formation peaked in approximately 3 h after the irradiation was terminated. Dose-dependence study indicated that NO formation measured 5 h after irradiation was leveled off at the dose higher than 50 Gy. Administration of NO synthase inhibitor, N(G)-monomethyl L-arginine (L-NMMA) shortly after irradiation completely abolished the NO signal, indicating that radiation-induced NO is produced through L-arginine-dependent NO synthase pathways. These results suggest that irradiation of X-ray initiates inflammation processes, resulting in delayed NO synthase expression and NO formation.  相似文献   

5.
Resveratrol, a polyphenolic compound found in grape skin and peanuts has been shown to prevent many diseases including cardiovascular diseases and cancer. To better understand resveratrol's potential in vivo toxicity, we studied the dose response using cDNA stress arrays coupled with drug metabolizing enzymatic (DME) assays to investigate the expression of stress-responsive genes and Phase I and II detoxifying enzymes in rat livers. Male and female CD rats were treated with high doses of resveratrol (0.3, 1.0 and 3.0 gm/kg/day) for a period of 28 days. Total RNA from rat liver was reverse-transcribed using gene-specific primers and hybridized to stress-related cDNA arrays. Among female rats, Phase I DME genes were repressed at 0.3 and 1.0 gm/kg/day doses, while genes such as manganese superoxide dismutase, cytochrome P450 reductase, quinone oxidoreductase and thiosulfate sulfurtransferase demonstrated a dose-dependent increase in gene expression. The modulation of these liver genes may implicate the potential toxicity as observed among the rats at the highest dose level of resveratrol. Real-Time PCR was conducted on some of the Phase II DME genes and anti-oxidant genes to validate the cDNA array data. The gene expression from real-time PCR demonstrated good correlation with the cDNA array data. UGT1A genes were amongst the most robustly induced especially at the high doses of resveratrol. We next performed Phase I and Phase II enzymatic assays on cytochrome P450 2E1 (CYP2E1), cytochrome P450 1A1 (CYP1A1), NAD(P)H:quinone oxidoreductase (NQO1), glutathione S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Induction of Phase II detoxifying enzymes was most pronounced at the highest dose of resveratrol. CYP1A1 activity demonstrated a decreasing trend among the 3 dose groups and CYP2E1 activity increased marginally among female rats over controls. In summary, at lower doses of resveratrol there are few significant changes in gene expression whereas the modulation of liver genes at the high dose of resveratrol may implicate the potential toxicity observed.  相似文献   

6.
There is concern about possible radiation damage to the eyes from occupational exposure and medical procedures. In this study, molecular mechanisms of proton radiation-induced oxidative damage to retinal cells were evaluated, with and without a cell-permeable superoxide dismutase (SOD) mimetic, metalloporphyrin compound (MnTE-2-PyP). Retinal mitochondria-associated genes and protein expression profiles were studied. Rats were treated with MnTE-2-PyP at 2.5 μg/injection into one eye 1 h before irradiation. Proton irradiation was delivered to the same eye at doses of 1 or 4 Gy and assays were done at 6 h. Levels of Bax, Bcl-2 and Sod2 proteins were evaluated by Western blot and caspase-3 immunohistochemistry was performed to confirm the occurrence of apoptosis. Expression of several genes playing central roles in regulating the mitochondrial apoptotic pathway were significantly increased after radiation exposure, including Bbc3, Bax, Bak1, Bid, and Bcl2. Among genes involved in radiation-induced oxidative stress, Sod2, Gpx and Ucp3 were up-regulated, whereas Ucp2 was down-regulated. In addition, irradiation caused changes in various proteins involved in apoptosis (caspase-3, Bax and Bcl2). Reduction in pro-apoptotic and increase in anti-apoptotic protein levels were documented after treatment with MnTE-2-PyP. Decreased activity of cytochrome c, which is involved in initiation of mitochondrial apoptosis, was also revealed after irradiation and MnTE-2-PyP. Data demonstrated that proton radiation induced mitochondrial apoptosis and altered mitochondrial function in retina. MnTE-2-PyP protected, or at least ameliorated, radiation-induced oxidative damage. These insights prompt further study of this compound as a potential therapeutic candidate for retinal protection against degenerative ocular damage induced by ionizing radiation.  相似文献   

7.

Background

Neuroblastomas are the most common extracranial solid tumors in children. Neuroblastomas are derived from immature cells of the sympathetic nervous system and are characterized by clinical and biological heterogeneity. Hypoxia has been linked to tumor progression and increased malignancy. Intermittent hypoxia or repeated episodes of hypoxia followed by re-oxygenation is a common phenomenon in solid tumors including neuroblastoma and it has a significant influence on the outcome of therapies. The present study focuses on how intermittent hypoxia modulates the stem-like properties and differentiation in neuroblastoma cells.

Methods and Findings

Cell survival was assessed by clonogenic assay and cell differentiation was determined by morphological characterization. Hypoxia-inducible genes were analyzed by real-time PCR and Western blotting. Immunofluorescence, real-time PCR and Western blotting were utilized to study stem cell markers. Analysis of neural crest / sympathetic nervous system (SNS) markers and neuronal differentiation markers were done by real-time PCR and Western blotting, respectively. Intermittent hypoxia stimulated the levels of HIF-1α and HIF-2 α proteins and enhanced stem-like properties of neuroblastoma cells. In intermittent hypoxia-conditioned cells, downregulation of SNS marker genes and upregulation of genes expressed in the neural crest were observed. Intermittent hypoxia suppressed the retinoic acid-induced differentiation of neuroblastoma cells.

Conclusions

Our results suggest that intermittent hypoxia enhances stem-like characteristics and suppresses differentiation propensities in neuroblastoma cells.  相似文献   

8.
Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH2A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation.  相似文献   

9.
Conjugated linoleic acid (CLA) is a polyunsaturated fatty acid, which has been recently proven to be effective in reducing body fat mass, but brings as a side effect, the liver enlargement due to an increased lipid content. The in vivo lipogenic activity has been suggested to be due to the reduction in fat mass and to the consequent metabolism of blood glucose to fatty acid in the liver rather than in the adipose tissue. We investigated the ability of CLA to directly induce steatosis by modulating the expression pattern of hepatic proteins involved in lipid metabolism. To avoid interferences derived from CLA metabolism by other tissues, we used the in vitro model of freshly isolated rat hepatocytes incubated in the presence of different CLA isomers. The direct effect of CLA on lipid accumulation in hepatocytes was demonstrated by the altered expression pattern of several proteins involved in lipid metabolism, as assessed by two-dimensional gel electrophoresis and confirmed by Western blotting analysis. The CLA isomer c9,t11 was most effective in modulating the protein expression profile.  相似文献   

10.
In the present study, using a newly developed fluorescent differential display technique, we have carried out large-scale screening for genes whose expression was regulated by phytochrome and antagonistically by a blue light receptor in the spores of the fern Adiantum capillus-veneris L. Spores after imbibition were briefly irradiated with red, red/blue or blue light and collected 8 h after the irradiation. Total RNA was isolated from each sample and used to make cDNA with an oligo-dT primer. The cDNA was then used as a template for PCR with the oligo-dT primer and 80 arbitrary primers. The resulting PCR products were analyzed by an automated fluorescent DNA sequencer. Among 8000 displayed bands, we identified 15 upregulated and four down-regulated bands by red light, and this red light effect was irreversibly reversed by blue light. We cloned one of the up-regulated cDNA fragments and used it to screen a cDNA library prepared from the spores. The isolated insert is predicted to encode Ser-(Pro) n repeats and showed homology with cell wall-associated extensins. The expression of this cDNA was induced 8 h after a red light treatment and the red light induction was photoreversibly prevented by far-red light and photo-irreversibly by blue light. The mRNA of this gene was detectable 4 h after red light irradiation and gradually increased in germinating spores.  相似文献   

11.
Acute changes in the gene expression profile in mouse brain after exposure to ionizing radiation were studied using microarray analysis. RNA was isolated at 0.25, 1, 5 and 24 h after exposure to 20 Gy and at 5 h after exposure of the whole brain of adult mice to 2 or 10 Gy. RNA was hybridized onto 15K cDNA microarrays, and data were analyzed using GeneSpring and Significant Analysis of Microarray. Radiation modulated the expression of 128, 334, 325 and 155 genes and ESTs at 0.25, 1, 5 and 24 h after 20 Gy and 60 and 168 at 5 h after 2 and 10 Gy, respectively. The expression profiles showed dose- and time-dependent changes in both expression levels and numbers of differentially modulated genes and ESTs. Seventy-eight genes were modulated at two or more times. Differentially modulated genes were associated with 12 different classes of molecular function and 24 different biological pathways and showed time- and dose-dependent changes. The change in expression of four genes (Jak3, Dffb, Nsep1 and Terf1) after irradiation was validated using quantitative real-time PCR. Up-regulation of Jak3 was observed in another mouse strain. In mouse brain, there was an increase of Jak3 immunoreactivity after irradiation. In conclusion, changes in the gene profile in the brain after irradiation are complex and are dependent on time and dose, and genes with diverse functions and pathways are modulated.  相似文献   

12.
13.
Male C57BL/6 mice were whole-body irradiated with 4.75 Gy of X-rays at the age of 2 months and killed at 2, 6, 12 and 19 months after irradiation. The percentage survival began to decline earlier and faster in the irradiated group than the controls up to 19 months after exposure when the study was terminated. The nuclear DNA content of individual hepatocytes was measured by a Feulgen-DNA microfluorometric method, and hepatocytes were classified into various ploidy classes. In the irradiated mice, the degree of polyploidization was significantly higher than the controls by 2 months after exposure and steadily increased up to 6 months after exposure. Thereafter, however, a slow return to the control level was found up to 19 months after irradiation. These results appear to support a hypothesis that radiation accelerates the ageing process as judged from hepatocyte polyploidization.  相似文献   

14.
15.
Dose assessment after radiological disasters is imperative to decrease mortality through rationally directed medical intervention. Our goal was to identify biomarkers capable of qualitative (nonirradiated/irradiated) and/or quantitative (dose) assessment of radiation exposure. Using real-time quantitative PCR, biodosimetry genes were identified in blood samples from cancer patients undergoing total-body irradiation. Time- (5, 12, 23, 48 h) and dose- (0-8 Gy) dependent changes in gene expression were examined in C57BL/6 mice. A training set was used to derive weighted voting classification algorithms (nonirradiated/irradiated) and continuous regression (dose assessment) models that were tested in a separate validation set of mice. Of eight biodosimetry genes identified in cancer patients ( ACTA2 , BBC3 , CCNG1 , CDKN1A , GADD45A , MDK , SERPINE1 , Tnfrsf10b ), expression of BBC3 , CCNG1 , CDKN1A , SERPINE1 and Tnfrsf10b was significantly (P < 0.05) increased in irradiated mice. CCNG1 and CDKN1A expression segregated irradiated mice from controls with an accuracy, specificity and sensitivity of 96.3, 100.0 and 94.4%, respectively, at 48 h. Multiple linear regression analysis predicted doses for the 0-, 1-, 2-, 4-, 6- and 8-Gy treatment groups as 0.0 ± 0.2, 1.6 ± 1.0, 2.9 ± 1.4, 5.1 ± 2.0, 5.3 ± 0.7 and 10.5 ± 5.6 Gy, respectively. These results suggest that gene expression analysis could be incorporated into biodosimetry protocols for qualitative and quantitative assessment of radiation exposure.  相似文献   

16.

Background

Epidemiological and experimental evidence that support the correlation between Type 2 diabetes mellitus (T2D) and increased risks of colorectal cancer formation have led us to hypothesize the existence of molecular crosstalk between insulin and canonical Wnt signaling pathways. Insulin was shown to stimulate Wnt target gene expression, utilizing the effector of the Wnt signaling pathway. Whether insulin affects expression of components of Wnt pathway has not been extensively examined.

Methods

cDNA microarray was utilized to assess the effect of insulin on gene expression profile in the rat intestinal non-cancer IEC-6 cell line, followed by real-time RT-PCR, Western blotting and reporter gene analyses in intestinal cancer and non-cancer cells.

Results

Insulin was shown to alter the expression of a dozen of Wnt pathway related genes including TCF-4 (= TCF7L2) and frizzled- (Fzd-4). The stimulatory effect of insulin on TCF-4 expression was then confirmed by real-time RT-PCR, Western blotting and luciferase reporter analyses, while the activation on Fzd-4 was confirmed by real-time PCR.

General significance

Our observations suggest that insulin may crosstalk with the Wnt signaling pathway in a multi-level fashion, involving insulin regulation of the expression of Wnt target genes, a Wnt receptor, as well as mediators of the Wnt signaling pathway.  相似文献   

17.
The effect of neutron doses from a D-T compact neutron generator on the liver cells of adult male and female albino Swiss mice was investigated. Fast neutrons (14.5 MeV) were delivered to the whole body in a single dose or in two, four, six or eight equal doses separated by 3-day intervals. The lowest dose, 100 rem, was given for an exposure time of 6 hours and was then steadily raised to 912 rem for an exposure time of 48 hours. During exposure the neutron flux was controlled by the activation foil technique. Animals were killed for testing after each irradiation. Histological examination of the hepatocytes in the light microscope showed marked degenerative changes only after the longer irradiation periods (24, 36 and 48 h). Electron microscopy showed cytological (cytoplasmic and nuclear) changes in the hepatocytes after only 12 hours' irradiation. Densitometric scans of electron micrographs of control and 12 h-irradiated livers indicated that the control hepatocyte interphase nucleus contains approximately 72% heterochromatin, while the irradiated nucleus contains only 64% heterochromatin.  相似文献   

18.
Great controversy exists regarding the biologic responses of osteoblasts to X-ray irradiation, and the mechanisms are poorly understood. In this study, the biological effects of low-dose radiation on stimulating osteoblast proliferation, differentiation and fracture healing were identified using in vitro cell culture and in vivo animal studies. First, low-dose (0.5 Gy) X-ray irradiation induced the cell viability and proliferation of MC3T3-E1 cells. However, high-dose (5 Gy) X-ray irradiation inhibited the viability and proliferation of osteoblasts. In addition, dynamic variations in osteoblast differentiation markers, including type I collagen, alkaline phosphatase, Runx2, Osterix and osteocalcin, were observed after both low-dose and high-dose irradiation by Western blot analysis. Second, fracture healing was evaluated via histology and gene expression after single-dose X-ray irradiation, and low-dose X-ray irradiation accelerates fracture healing of closed femoral fractures in rats. In low-dose X-ray irradiated fractures, an increase in proliferating cell nuclear antigen (PCNA)-positive cells, cartilage formation and fracture calluses was observed. In addition, we observed more rapid completion of endochondral and intramembranous ossification, which was accompanied by altered expression of genes involved in bone remodeling and fracture callus mineralization. Although the expression level of several osteoblast differentiation genes was increased in the fracture calluses of high-dose irradiated rats, the callus formation and fracture union were delayed compared with the control and low-dose irradiated fractures. These results reveal beneficial effects of low-dose irradiation, including the stimulation of osteoblast proliferation, differentiation and fracture healing, and highlight its potential translational application in novel therapies against bone-related diseases.  相似文献   

19.
M059J cells provide the only example of DNA-PKcs (now known as PRKDC) deficiency in a human cell line. M059K cells, derived from the same tumor specimen, express PRKDC protein and activity and, together with M059J, provide a useful model in which to study the role of DNA-PK in cellular responses to DNA-damaging agents. Because these cells are of tumor origin, we used Atlas human cancer cDNA expression arrays to investigate possible differential expression of other DNA repair genes in control and irradiated samples. cDNA array results indicated differential expression of 14 genes. Northern blotting confirmed relatively greater expression of replication factor C 37-kDa subunit mRNA in M059J cells compared to M059K cells and reduced expression of DNA ligase IV compared to ligase III in both cell lines independent of irradiation. These results suggest that other DNA repair proteins are altered in these cell lines and that repair mechanisms predicted from the study of normal tissues may be fundamentally altered in human cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号