首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rüdiger Grotha 《Planta》1973,115(2):147-160
Summary In isolated thallus fragments of Riella dedifferentiation of mature cells takes place in a polar region. RNA-synthesis is stimulated first and then DNA-synthesis as well as nuclear and cell divisions in some of the cells. DNA-synthesis is blocked by 10-5 M FdUrd while polarity of dedifferentiation disappears due to activation of RNA-synthesis in an increasing number of cells.The influence of FdUrd on RNA-synthesis in regenerating fragments has been investigated by determining incorporation of [14C8]adenine-sulfate into nucleic acids and measuring the rate of turn-over of the latter. The nucleic acids were fractionated on columns of Sephadex G-150 and G-200 and subjected to electrophoresis on polyacrylamide gels.No differences in the rate of synthesis of the single species of RNA were found. Apparently, the synthetic capacity of the whole fragment is unchanged after treatment with FdUrd but the intercellular correlations which control the formation of meristematic centres are not evolved.After precipitation of the nucleic acids with ethanol the low molecular weight precursors in the supernatant were fractionated on Sephadex G-10 columns. After treatment with FdUrd the fraction of nucleotides has a higher rate of incorporation of [14C]adenine and a higher turn-over. It is assumed that the energy metabolism is changed when the cells are blocked at the beginning of the S-phase.

Teil einer Dissertation der Fakultät für Mathematik und Naturwissenschaften der Technischen Universität Hannover.  相似文献   

2.
The effect of a treatment with 5-fluoro-2'-deoxyuridine (FdUrd) in combination with 2'-deoxyuridine (dUrd) on cell proliferation, incorporation of DNA precursors into DNA and sister-chromatid exchanges (SCEs) has been analyzed in Allium cepa meristem cells. FdUrd in the range 10(-9)-5 X 10(-7) M produced a dose- and time-dependent decrease in the amount of cells in mitosis. This inhibitory effect could be reversed by 70-80% in short-term (6 h) experiments, by exogenously supplied dUrd at a concentration of 10(-4) M. However, at the highest FdUrd dose tested (10(-7) M), 10(-4) M dUrd could not reverse the FdUrd effect in long-term experiments (20 h, about one cell cycle interval), as shown by analyzing the kinetics of synchronous cell populations. DNA extracted from cells pulsed with [6-3H]dUrd in the presence of FdUrd and 6-amino-uracil (6-AU), an inhibitor of uracil-DNA glycosylase, contained a small amount of label (at least 3% of the total radioactivity incorporated into DNA) in the form of [6-3H]dUMP. Thus, we conclude that, under our experimental conditions, exogenously supplied dUrd may be metabolized intracellularly to 2'-deoxyuridine triphosphate (dUTP) and that this deoxynucleotide may eventually be mis-incorporated into DNA. As far as the formation of SCEs is concerned, analysis of second division chromosomes showed that 2'-deoxyuridine monophosphate (dUMP) residues present in newly-synthesized DNA strands are probably not relevant to SCE formation. However, by analyzing SCE levels in third division chromosomes of cells treated with FdUrd and dUrd during their second cycle, we have scored a 6-fold increase in the reciprocal SCE level which demonstrates that the replication of a dUMP-containing DNA template leads to a higher SCE yield.  相似文献   

3.
Effects of cycloheximide on chromatin biosynthesis.   总被引:10,自引:0,他引:10  
In the presence of sufficient cycloheximide, puromycin or NaCl to quantitatively inhibit protein synthesis in HeLa cells, thymidine incorporation continues at 20% of control rates for 60 to 90 minutes, after which incorporation gradually ceases. Both DNA and protein synthesis revert to control rates in about five minutes after removal of cycloheximide.DNA synthesis in the presence of cycloheximide appears to be a continuation of the replicative process by several criteria. The persistent DNA synthesis in the presence of cycloheximide is abolished by hydroxyurea, which does not inhibit repair synthesis, while ethidium bromide, an inhibitor of mitochondrial DNA synthesis, is without effect. Nuclear DNA is not nicked during incubation in cycloheximide. Low molecular weight Okazaki fragments (4 to 5 S) are both synthesized and processed to high molecular weight DNA in cells treated with cycloheximide. Replication forks, identified in alkaline CsCl gradients by incorporation of bromodeoxyuridine as a density marker just before the addition of cycloheximide, are selectively labeled with radioactive thymidine during DNA synthesis.In the presence of cycloheximide the maturation of DNA intermediates into high molecular weight DNA is defective. All size classes of DNA fragments, normally present during progression of low to high molecular weight DNA, are demonstrable in cells preincubated in cycloheximide for prolonged periods. However, 21 S fragments, intermediate in size between Okazaki pieces and mature, high molecular weight DNA, accumulate in cells treated with cycloheximide, demonstrating a defect in maturation of the 21 S intermediates into high molecular weight DNA. After removal of the cycloheximide, the 21 S DNA fragments are processed to high molecular weight DNA at a significantly impaired rate, requiring about three hours for completion of chain growth as compared to 40 to 60 minutes in controls. The slowed growth of DNA fragments synthesized in the presence of cycloheximide following drug removal is not due to persisting effects of cyeloheximide since DNA synthesis immediately following removal of the drug has chain growth rates similar to that of controls.Pools of chromatin proteins exist in HeLa cells, as demonstrated by a brief, labeled amino acid pulse followed by a chase with cycloheximide. The specific activity of chromatin proteins increases significantly during 60 minutes of cycloheximide inhibition. Histone f2a1 accumulates preferentially during this chase period, suggesting that a supply of this highly conserved histone might be requisite to continued replication.Comparison of chromatin synthesized during cycloheximide treatment with pulse-labeled control chromatin has provided insight into the mechanism of assembly of proteins and DNA into the nucleoprotein complex. The DNA of ch-chromatin2 is more susceptible to nuclease digestion than control chromatin, suggesting that it is deficient in protein content. Upon reversal of cycloheximide inhibition, the recovery of nuclease digestibility of ch-chromatin to control values takes two to three hours, a time similar to that required for conversion of the corresponding 21 S chDNA fragments to high molecular weight DNA. Briefly pulse-labeled (30 to 60 s) DNA in control chromatin also has an enhanced susceptibility to nuclease digestion of the same degree as found in ch-ehromatin. The time of recovery of increased nuclease susceptibility of newly made chromatin DNA (via protein addition) to control levels is about 10 to 15 minutes and corresponds to the time required for synthesis of replicon-sized units of DNA.In addition to being nuclease-sensitive, both cycloheximide and newly synthesized (30 to 60 s) chromatin have lighter buoyant densities in CsCl gradients than bulk chromatin. This property exists for only one to two minutes in controls and is probably due to structural properties distinct from those rendering nuclease sensitivity.Limit digests of chromatin by micrococcal nuclease yield a characteristic pattern of polynucleotides when resolved in polyacrylamide gels. The radioactivity profiles of limit digest polynucleotides from control and ch-chromatin are identical, indicating that pre-existing chromatin proteins remain in place on newly replicated DNA in the same fashion as in mature chromatin.  相似文献   

4.
1. During the first 10 minutes of viral growth following infection of E. coli by phage T2 in broth, a pool of DNA is built up that contains phosphorus later to be incorporated into phage. This pool receives phosphorus from, but does not contain, the bacterial DNA. 2. After 10 minutes, DNA synthesis and phage maturation keep pace in such a way that the amount of precursor DNA increases moderately for a time and then remains constant. 3. The pool so described is defined in terms of the kinetics of transport of phosphorus from its origins in the culture medium, the bacterial DNA, and the DNA of the parental phage, to the viral progeny. The most interesting parameter of this system is the size of the precursor pool, which measures 10–9 to 2 x 10–9 µg. DNA-P (50 to 100 phage particle equivalents) per bacterium. 4. Neither the precursor nor the intracellular phage population exchanges phosphorus with the phosphate in the medium. More interestingly, the phosphorus in mature phage does not exchange with phosphorus in the precursor, showing that maturation is an irreversible process. 5. Maturation is also a remarkably efficient process. About 90 per cent of labeled phosphorus introduced early into the precursor pool is later incorporated into phage. 6. Viral DNA is synthesized at the rate of about 1.5 x 10–10 µg. DNA-P (7 or 8 phage particles) per bacterium per minute. This is somewhat faster than bacterial DNA is formed, but considerably slower than RNA is formed, in uninfected bacteria. 7. The transport of phosphorus from medium to viral precursor DNA takes an average of 8 or 9 minutes, and from precursor to phage an additional 7 or 8 minutes. 8. Metabolically active RNA has been detected in infected bacteria.  相似文献   

5.
The effect of 5-fluoro-2'-deoxyuridine (FdUrd) on [methyl-H] thymidine incorporation by bacterioplankton populations in subtropical freshwater, estuarine, and oceanic environments was examined. In estuarine waters, intracellular isotope dilution was inhibited by FdUrd, which enabled us to estimate both intracellular and extracellular isotope dilution. In 2 of 10 cases, extracellular isotope dilution was significant. At low concentrations of [methyl-H]thymidine or [6-H]thymidine, FdUrd completely inhibited incorporation of radioactivity into protein and RNA. At high concentrations of [H]thymidine, however, FdUrd had little effect on labeling patterns. The dihydrofolate reductase inhibitors amethopterin and trimethoprim had no effect on macromolecular labeling patterns. These results suggest that thymidylate synthase is not involved in nonspecific labeling and that FdUrd inhibits nonspecific labeling by blocking some other enzyme involved in thymidine catabolism. In oligotrophic oceanic and freshwater samples, FdUrd did not inhibit intracellular isotope dilution or [H]thymidine labeling of protein and RNA, but caused some inhibition of [H]thymidine incorporation into DNA. The ability of FdUrd to inhibit nonspecific macromolecular labeling during [H]thymidine incorporation was significantly correlated (r = 0.84) with total thymidine incorporation (in picomoles per liter per hour). The results are discussed in terms of applications of FdUrd to routine bacterial production measurements and the general assumptions of [H]thymidine incorporation.  相似文献   

6.
7.
Metabolism of Okazaki fragments during simian virus 40 DNA replication.   总被引:3,自引:0,他引:3  
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks.  相似文献   

8.
In the presence of dUTP, net DNA synthesis in vitro is substantially reduced. Small DNA fragments that arise during in vitro DNA synthesis in the presence of dUTP are produced as a result of dUMP incorporation and subsequent post-replication excision repair process initiated by uracil-DNA-glycosylase. The size of the fragments is dependent upon the amount of dUMP incorporated, but unlike the normal 4S intermediates of DNA synthesis, these repair products are not precursors to high molecular weight DNA but are further degraded. The high levels of dUTPase as well as the presence of RNA primers on most nascent DNA pieces (Tseng and Goulian, 1977) suggest that repair of uracil-containing DNA does not contribute to the generation of the small, nascent DNA pieces found during DNA synthesis in this in vitro system.  相似文献   

9.
10.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

11.
The synthesis of a relatively homogeneous RNA fraction was observed in germinating wheat embryo. The fraction synthesised within the first 3 h of germination had a high molecular weight (approx. 2.10(6)) and a specific nucleotide composition. In particular, the UMP content was unusually high (47 mol%). The high UMP content resulted probably from the presence of UMP-rich regions within the newly-synthesised polynucleotide chain. Neither ribosomal nor transfer DNA sequences were transcribed at the same time. It is suggested that the newly-synthesised RNA fraction represents an mRNA precursor and is transcribed in the immediate response of wheat embryo to the environmental stimuli to germinate.  相似文献   

12.
Pulse-labeled HeLa cell RNA centrifuged under denaturing conditions was hybridized with DNA of recombinant phages containing sea urchin histone genes. This cross-hybridization showed the presence of histone mRNA sequences in high molecular weight RNA molecules. Treatment of the cells with actinomycin to stop RNA synthesis resulted in the rapid decay of this high molecular weight RNA followed by an increase of 9S histone mRNA in the cytoplasm.The results are consistent with the presence in HeLa cells of a high molecular weight precursor to histone messengers.  相似文献   

13.
The molecular weights of the predominant rRNA precursors as well as those of 26-S and 17-S mature rRNA from Saccharomyces carlsbergensis were determined by polyacrylamide gel electrophoresis in the presence of formamide. Mature 26-S + 5.8-S rRNA was found to have a molecular weight of 1.24 X 10(6) while their immediate precursor, 29-S RNA, had a molecular weight of 1.52 X 10(6). Values of 0.70 X 10(6) and 0.82 X 10(6) were obtained for the molecular weights of mature 17-S rRNA and its 18-S precursor. Finally the 37-S precursor, common to both 29-S and 18-S RNA, was found to have a molecular weight of 2.80 X 10(6). Each precursor rRNA, therefore, contains extra sequences not found at the next stage of maturation.  相似文献   

14.
Polysomes producing IgGl(kappa) myeloma protein were specifically selected by an immunoprecipitation method, and immunoglobulin light chain mRNA was purified from the precipitated polysomes. The purified mRNA migrated predominantly as a single band and the molecular weight of this mRNA was calculated to be 410.000 by polyacrylamide gel electrophoresis in 98% formamide. A protein possessing a molecular weight of 25,000, which is the size of the light chain precursor, was synthesized as a major product of translation in a wheat germ cell-free system. DNA complementary to the mRNA (cDNA) was prepared with avian myeloblastosis virus RNA-dependent DNA polymerase. This cDNA had an average size of 8.3S as determined by sedimentation through an alkaline sucrose gradient. Using this cDNA, Crt 1/2 values of template RNA and RNA from various preparations were calculated from the results of molecular hybridization. The relative content of the mRNA increased 4,4-fold during the immunoprecipitation of polysomes.  相似文献   

15.
Pro-opiomelanocortin, the common glycoprotein precursor to adrenocorticotropin and beta-lipotropin, is the most abundant protein synthesized in rat neurointermediate lobes. Dissected rat neurointermediate lobes were incubated in the presence of canavanine, an analog of arginine, to determine (a) whether canavanine could be incorporated into pro-opiomelanocortin molecules and (b) if incorporation occurs, whether there is any effect on the processing mechanism of the prohormone. Preincubation of rat neurointermediate lobes for 16 h in the presence of 10 mM canavanine results in the production of pro-opiomelanocortin molecules in which most, if not all, the arginine residues have been replaced by canavanine. Identification of canavanine-containing pro-opiomelanocortin forms was done by two-dimensional electrophoresis, tryptic and chymotryptic peptide mapping, as well as by analysis, on polyacrylamide gels in the presence of sodium dodecyl sulfate, of the fragments resulting from a partial digestion with chymotrypsin. During pulse-chase experiments, canavanine-containing pro-opiomelanocortin molecules were found to be processed at a much slower rate than the normal precursor forms: after a 2-h chase, conversion of approximately 25% of the analog-containing prophormone was observed compared to 83% of the nonanalog-containing precursors. Moreover, the small proportion of canavanine-containing precursor molecules which had undergone cleavage during the chase yielded atypical large molecular weight peptides. These results indicate that canavanine incorporation into neurointermediate lobe proteins considerably slows down the conversion of pro-opiomelanocortin into its different end products.  相似文献   

16.
Restriction enzymes have proven to be among the most valuable tools in molecular biology. In this work, we demonstrate that the cleavage of fluorescently labeled, PCR-amplified DNA can be used as a simple and highly sensitive technique for detection of sequences present in a percentage as low as 0.6% in a DNA pool. Due to the fact that fluorescent labeling of DNA fragments enables such sensitive detection and quantification of restriction enzyme cleavage, the method was further exploited in monitoring of the enzymatic digestion completeness and in determination of factors that influence restriction enzyme effectiveness. We analyzed the activity of six restriction endonucleases; the percentage of uncleaved DNA fragments predominantly ranged between 2.0 and 2.5 and the highest value was 8.00%. We conclude that, since the enzymatic digestion completeness may not always be assured, each assay based on restriction enzyme cleavage that is intended to be used in investigations of heterogeneity in a DNA pool should be constructed so that the presence of cleaved sequences is the indication of pool nonuniformity. When the presence of uncleaved sequences indicates pool heterogeneity, the results could be misleading due to possible incompleteness of enzymatic cleavage.  相似文献   

17.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

18.
A radioactive method for determining the total rates of synthesis and degradation of RNA in a bacterial culture has been developed. The rates (which are expressed as moles of AMP residue transferred per unit DNA per unit time) are calculated from the amount of radioactivity accumulated in the RNA pool by taking into account (i) the increasing specific activities of a precursor triphosphate and RNA, (ii) the withdrawal of radioactivity from the RNA pool by degradation, and (iii) the increasing DNA content of the culture. The method is applicable not only to "balanced" accumulation where DNA and RNA accumulate in a constant proportion, but also to "unbalanced" accumulation. Examples illustrating the application of this method are described.  相似文献   

19.
Regulation of DNA synthesis was investigated in SV40 transformed 3T3 cells exhibiting variable growth rates and residence times in S phase when cultured in the presence of different serum concentrations. Pulse-labeled DNA was chased into large molecular weight material in vivo much more slowly in slowly growing cells than in cells growing at the normal rate. Consistent with this, the joining of short (less than 10 S) chains to form long (greater than 10 S) chains by whole cell lysate system in vitro was greatly impaired in slowly growing cells compared to controls. Thus the lengthening of S phase in SV3T3 cells growing slowly in low serum is reflected in a reduced rate of DNA chain elongation. The presence of cycloheximide during chase in vivo reduced the rate of conversion of pulse-labeled molecules into large molecular weight DNA in both slowly growing and normally growing cells.  相似文献   

20.
The procedure based on binding of nucleic acids with glass surface in presence of chaotropic salts was adapted for efficient isolation of 100-10000 b.p. DNA fragments and 50-10,000 b. RNA fragments. The method provide 90% and 85% efficacy of isolation of 100 b.p. DNA and 100 b. RNA fragments respectively. High molecular weight nucleic acids are isolated with 98% efficacy. Isolated nucleic acids are free from contaminations, influencing nucleic acids modifying enzymes and fluorochromes. The method is rapid, simple and cost-effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号