共查询到20条相似文献,搜索用时 0 毫秒
1.
M Misakian 《Bioelectromagnetics》1991,12(6):377-381
A comparison is made of induced current densities, electric fields, and rates of energy deposition during in vitro studies with linearly and circularly polarized, extremely low frequency magnetic fields for a cylindrical volume of culture medium. 相似文献
2.
3.
For in vitro studies on the effect of extremely low frequency (ELF) magnetic field exposures in different laboratories, a programmable, high precision exposure system enabling blinded exposures has been developed and fully characterized. It is based on two shielded 4 coil systems that fit inside a commercial incubator. The volume of uniform B field exposure with 1% field tolerance is 50% larger compared to a Merrit 4 coil system with the same coil volume. The uncertainties for the applied magnetic fields have been specified to be less than 4%. The computer controlled apparatus allows signal waveforms that are composed of several harmonics, blind protocols, monitoring of exposure and environmental conditions and the application of B fields up to 3.6 mT root-mean-square amplitude. Sources of artifacts have been characterized: sham isolation >43 dB, parasitic incident E fields <1 V/m, no recognizable temperature differences in the media for exposure or sham state, and vibrations of the mechanically decoupled dish holder <0.1 m/s(2) (= 0.01 g), which is only twice the sham acceleration background level produced by the incubator and fan vibrations. 相似文献
4.
Francis X. Hart 《Bioelectromagnetics》1996,17(1):48-57
Calculations of the current density and electric field distributions induced in cell cultures by an applied low-frequency magnetic field have assumed that the medium is uniform. This paper calculates these distributions for a more realistic, inhomogeneous, anisotropic model in which the cells are regarded as conducting squares surrounded by insulating membranes. Separate parameters are used to specify the resistivities of the cell interior, the cell membrane parallel to its surface, the cell membrane perpendicular to its surface, and the intercellular junction parallel to the membrane. The presence of gap junctions connecting the interiors of adjacent cells is also considered. For vertical applied magnetic fields, the induced currents and field distributions may deviate considerably from the homogeneous medium model if there is sufficiently tight binding of the cells to each other. The presence of gap junctions can produce relatively large transmembrane electric fields or intracellular current densities. These considerations are generally less important for horizontal applied fields. A simple microscopic model of the cell surface is also discussed. © 1996 Wiley-Liss, Inc. 相似文献
5.
In-vitro studies of biological effects of electromagnetic fields are often conducted with cultured cells either in suspension or grown in a monolayer. In the former case, the exposed medium can be assumed to be homogeneous; however, eventually the cells settle to the bottom of the container forming a two layer system with different dielectric and conductive properties. In the present work the effect of this separation on the electric field distribution is calculated and experimentally measured at selected positions for a commonly used exposure configuration. The settled cell suspension is modeled by a well-defined two layer system placed in a rectangular container with the base of the container parallel to the direction of the magnetic field. Theoretical calculations based on numerical techniques are done for various two layer systems with different conductivities in each layer. The agreement between the theoretical calculations and the experimental measurements is within ± 1.5 mV/m, or 10% of the maximum induced field when the conductivity of the lower layer is ten times that of the upper layer. This result is well within experimental error. When the thickness of one of the layers is small compared to the thickness of the other layer, it is found that the electric field distribution is essentially that of the homogeneous case. The latter situation corresponds to a typical cell exposure condition. © 1993 Wiley-Liss, Inc. 相似文献
6.
Electric fields induced in a conductive body by the magnetic field of a current-carrying wire were analyzed theoretically and experimentally to assess the dosimetric importance of highly nonuniform, field-exposure conditions. Experimentation revealed that a 60-Hz magnetic field was inversely proportional to the radius of a wire bundle carrying 100 A within a 0.5-m2 test area. A miniaturized electric field probe was used to measure the electric fields induced in 5-cm-deep, saline-filled models. In the theoretical analysis, numerical estimates of induced fields were made by a spreadsheet method. The theoretical calculations and the measured values of induced electric fields were generally in good agreement. The induced fields were in a plane perpendicular to a vertically incident magnetic field; the maximally induced fields were in areas nearest the wire bundle. The strength of the induced field increased with model size: from 96 microV/cm in a 10 x 10 cm model to 176 microV/cm in a 40 x 40 cm model. The strength of the field induced in a 20 x 20 cm model decreased with increasing model-to-wire spacing: from 132 microV/cm for a 1-cm spacing (2-mT maximum, incident field) to 50 microV/cm for a 6-cm spacing (0.33-mT maximum). The results indicate that increases in local values of nonuniformly incident fields produce relatively small increases in induced electric fields. This finding may be important in dosimetric consideration of circumstances, such as use of electric blankets, in which fields of low average strength are accompanied by intense local fields. 相似文献
7.
Martin Misakian 《Bioelectromagnetics》1997,18(7):524-526
Some properties of induced electric fields in cell culture media produced by vertical circularly polarized magnetic fields are examined. The described geometry is not advantageous for determining effects that may be attributable to induced electric fields or currents. Bioelectromagnetics 18:524–526, 1997. Published 1997 Wiley-Liss, Inc. 相似文献
8.
Short-circuit currents, surface electric fields, and axial current densities were measured in electrically grounded guinea pigs exposed to a uniform, vertical, ELF electric field. These data are 70–110% of corresponding values obtained in grounded rats exposed to the same electric field. 相似文献
9.
Myles Capstick Primo Schär David Schuermann Albert Romann Niels Kuster 《Bioelectromagnetics》2013,34(3):231-239
A programmable system has been developed for the study of both transient and persistent effects of extremely low frequency (ELF) magnetic field exposure of cell cultures. This high‐precision exposure system enables experimental blinding and fully characterized exposure while simultaneously allowing live cell imaging. It is based on a live imaging cell around which two asymmetrical coils are wound in good thermal contact to a temperature‐controlled water jacket, and is mounted on a microscope stage insert. The applied B‐field uniformity of the active volume is better than 1.2% with an overall exposure uncertainty of less than 4.3% with very low transient field levels. The computer‐controlled apparatus allows signal waveforms that are sinusoidal or composed of several harmonics, blind protocols, and monitoring of exposure and environmental conditions. B‐fields up to 4 mT root mean square amplitude are possible with minimal temperature variation and no recognizable temperature differences between exposure and sham states. Sources of artifacts have been identified and quantified. There are no visible vibrations observable even at the highest magnifications and exposure levels. Bioelectromagnetics 34:231–239, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
10.
An analysis is given of the interaction between extremely low-frequency (ELF) electric fields and animals of arbitrary body shape. This analysis is based on three approximations which are valid in the ELF range: In living tissues, capacitive (displacement) currents are negligible compared to conduction currents; effects resulting from the finite velocity of propagation of electromagnetic fields are negligible; skin effect in living tissues is negligible. Major conclusions of the analysis are: (a) The electric field outside the body, the induced charge on the surface of the body, and the total current crossing any section through the body (eg, through the neck or limbs) are completely determined by the characteristics of the applied ELF electric field, the shape of the body, its location relative to ground and other conductors, and any conduction currents from the body to ground or other conductors. (b) All of the quantities in (a) can be measured using conducting animal models. (c) The magnitudes of the electric field outside the body and the induced charge density on the surface of the body are independent of frequency, in the ELF range, when the body is either insulated from or shorted to ground (and any other conductors in the system). (d) The only quantities affected by the electrical properties of the tissues comprising the body are the current density and electric field inside the body. (e) The electric field outside and inside a body will be unchanged by a scaled change in its size. 相似文献
11.
While electric fields at intermediate frequencies are not widely utilized for industrial technologies, surprisingly, certain toys emit the highest electric fields found in our living environment. These toys, plasma balls, are devices that use high voltage to create ionized light discharges. In this study, we assessed exposure to electric fields and contact/induced current from a recreational plasma ball device. The electric field strength was measured as a function of distance from the device, and the contact/induced current was measured with a current clamp in different exposure situations with point or grasping contact. The characteristic spectra of the electric field and contact current were measured, and both the multiple frequency rule and weighting of the spectra were applied according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998 and 2010 guidelines. The results indicate that the recommended reference levels for the general public are exceeded at distances <1.2 m, and that the contact currents in the hand may be twice higher than recommended by the general public guidelines. 相似文献
12.
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline‐powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline‐powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline‐powered vehicle and at least one electric vehicle, enabling intra‐model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40–1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline‐powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross‐section of electric‐type vehicles. Bioelectromagnetics 34:156–161, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
13.
Douglas L. Miller 《Bioelectromagnetics》1996,17(3):167-173
Extremely-low-frequency (ELF) magnetic fields interact with an animal by inducing internal electric fields, which represent the internal dose from an external exposure. In this study, an electric field probe of approximately 2 mm resolution was used to measure fields induced in rat carcasses by a 60 Hz magnetic field at 1 mT. With the rat lying on its side, the probe was inserted through a small hole in the body wall, and scanned at 5 mm increments from the side with frontal and axial exposure (field horizontal) and from the front with lateral exposure (field vertical). The induced electric field declined from a maximum at the entrance to the abdomen and crossed zero to negative (180° phase shift) values within the body as expected. In general, the magnitudes of the measurements inside the abdomen were less than expected from whole-body calculations that used homogeneous-ellipsoidal models of a rat in the three orientations. The low measurements did not appear to be explained by perpendicular field components, by conductivity differences between the tissue and the probe path, or by air in the lungs. The low measurements probably result from inhomogeneities in actual rats that include conductivity differences between tissues and biological membranes. For example, an alternative model considered the abdominal cavity to be electrically isolated from the body by the diaphragm and the peritoneum and calculations from this model were in better agreement with the measurements inside the abdomen (than were the whole-body calculations). Therefore, inhomogeneities in conductivity and biomembranes such as the peritoneum should be considered in order to fully understand ELF-induced field dosimetry. © 1996 Wiley-Liss, Inc. 相似文献
14.
The facility consists of a 12 × 11.5 × 2.4 m high room containing six sets of exposure apparatus and the other equipment necessary to maintain a pathogen-free system. The apparatus sets produced 5 mT (rms), 0.5 mT, or a sham exposure. The apparatus was arranged in the room to minimize the fringing field of the 5 mT set at the sham position. Each set was 3.85 × 1.80 × 0.66 m in outside dimension, containing 24 cages in the magnetically homogeneous region. The apparatus was designed using Harvey's figure-eight-configuration and generated a horizontal sinusoidal alternating field. In order to save electric power, the coil of the apparatus constituted a 50 Hz LC resonance circuit with a condensor bank to which electric power was supplied to compensate losses. Magnetic flux density was kept constant by controlling the coil current. Although mild steel was used in the skeleton of the building, the fringing flux at the sham was as low as 0.1 to 1 μT. Stainless steel was used for ventilating ducts, racks for the cages, cage covers, feeder baskets, and watering nozzles. The homogeneity of the field was measured to be ± 10% in the animal residence area, and food and water consumption was found to be unaffected by the field. At 5 mT, the coil current was 370 A, and the hollow coil was cooled by a stream of 20°C water to prevent both heat and dew on the coil surface. Vibration and acoustic noise was prevented by fiber reinforced plastic framework of the coil. High harmonic distortion was not observed at the output terminal of the coil driver. The facility has operated without trouble for 2 years. © 1993 Wiley-Liss, Inc. 相似文献
15.
A laboratory facility specifically designed for controlled human exposure to 60-Hz electric (0 to 16 kV/m) and magnetic (0 to 32 A/m, B = 0 to 40 microT) fields has been constructed. The facility presents uniform fields under controlled temperature and humidity. Special control systems allow collection of physiological data during, as well as before and after, exposure to electric fields at strengths to 16 kV/m under verified double-blind control. Exposure to continuous or intermittent fields is possible in the facility. The capability of obtaining physiological data during actual exposure to constant or intermittent, 60-Hz fields, and of doing so without either the subject or the experimenter being aware of actual field conditions, is a critical factor in valid experimentation. 相似文献
16.
Hiroo Tarao Leena H. Korpinen Harri A. Kuisti Noriyuki Hayashi Jarmo A. Elovaara Katsuo Isaka 《Bioelectromagnetics》2013,34(1):61-73
An ungrounded human, such as a substation worker, receives contact currents when touching a grounded object in electric fields. In this article, contact currents and internal electric fields induced in the human when exposed to non‐uniform electric fields at 50 Hz are numerically calculated. This is done using a realistic human model standing at a distance of 0.1–0.5 m from the grounded conductive object. We found that the relationship between the external electric field strength and the contact current obtained by calculation is in good agreement with previous measurements. Calculated results show that the contact currents largely depend on the distance, and that the induced electric fields in the tissues are proportional to the contact current regardless of the non‐uniformity of the external electric field. Therefore, it is concluded that the contact current, rather than the spatial average of the external electric field, is more suitable for evaluating electric field dosimetry of tissues. The maximum induced electric field appears in the spinal cord in the central nervous system tissues, with the induced electric field in the spinal cord approaching the basic restriction (100 mV/m) of the new 2010 International Commission on Non‐Ionizing Radiation Protection guidelines for occupational exposure, if the contact current is 0.5 mA. Bioelectromagnetics 34:61–73, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
17.
Xi‐Lin Chen Stefan Benkler Nicholas Chavannes Valerio De Santis Jurriaan Bakker Gerard van Rhoon Juan Mosig Niels Kuster 《Bioelectromagnetics》2013,34(5):375-384
Compliance with the established exposure limits for the electric field (E‐field) induced in the human brain due to low‐frequency magnetic field (B‐field) induction is demonstrated by numerical dosimetry. The objective of this study is to investigate the dependency of dosimetric compliance assessments on the applied methodology and segmentations. The dependency of the discretization uncertainty (i.e., staircasing and field singularity) on the spatially averaged peak E‐field values is first determined using canonical and anatomical models. Because spatial averaging with a grid size of 0.5 mm or smaller sufficiently reduces the impact of artifacts regardless of tissue size, it is a superior approach to other proposed methods such as the 99th percentile or smearing of conductivity contrast. Through a canonical model, it is demonstrated that under the same uniform B‐field exposure condition, the peak spatially averaged E‐fields in a heterogeneous model can be significantly underestimated by a homogeneous model. The frequency scaling technique is found to introduce substantial error if the relative change in tissue conductivity is significant in the investigated frequency range. Lastly, the peak induced E‐fields in the brain tissues of five high‐resolution anatomically realistic models exposed to a uniform B‐field at ICNIRP and IEEE reference levels in the frequency range of 10 Hz to 100 kHz show that the reference levels are not always compliant with the basic restrictions. Based on the results of this study, a revision is recommended for the guidelines/standards to achieve technically sound exposure limits that can be applied without ambiguity. Bioelectromagnetics 34:375–384, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
18.
Vittoria Margonato Arsenio Veicsteinas Renato Conti Paolo Nicolini Paolo Cerretelli 《Bioelectromagnetics》1993,14(5):479-493
A three-year investigation was conducted on the biological effects of high-intensity electric field exposures of rats for up to 18% of their life span. Two hundred and forty adult male rats, divided into groups of 20 animals each, were exposed at ground potential for 8 h/ day at 25-kV/m and 100-kV/m 50-Hz electric fields or were sham exposed for 280, 440, and 1240 h. The corresponding ages at sacrifice were 140, 164, and 315 days. An additional group of 40 rats was investigated under similar experimental conditions after 440 h of exposure at floating potential. Independent of exposure duration, mode of grounding, and field strength, no statistical differences in body weight, morphology, and histology of the liver, heart, mesenteric lymph nodes, and blood variables (hematology and serum chemistry) were found in comparison with sham-exposed animals. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (TS)at sacrifice varied widely among experimental animals in the same group but did not differ in exposed compared with sham-exposed rats. A nonsignificant tendency toward a decrease in the testes/body weight ratio was found after 1240 h of exposure. Microscopic examination of a large number of specimens showed no quantitative or qualitative statistical differences in testes alterations either among exposed animals or between exposed and their corresponding sham-exposed groups. We conclude that 50-Hz electric field exposure, even of long duration at very high field strengths, does not induce harmful effects on tissues with high cellular turnover rates and does not impair the reproductive function of rats. Moreover, after exposure, all variables investigated were well within the normal physiological range. © 1993 Wiley-Liss. Inc. 相似文献
19.
Gajda GB McNamee JP Thansandote A Boonpanyarak S Lemay E Bellier PV 《Bioelectromagnetics》2002,23(8):592-598
An applicator for in vitro cell culture exposure was developed based on a circularly polarized, cylindrical waveguide for the 1.9-GHz frequency band used by Personal Communications Services (PCS) in Canada. The applicator consists of two coaxial Petri dishes that sit on the open end of the cylindrical waveguide. The inner 60-mm Petri dish contains the cell culture while the outer 150-mm dish contains coolant water, which is circulated from a pump. A dosimetric evaluation was made using thermometric and E-field probe techniques. The latter allowed the entire inner dish to be scanned to determine the range of specific absorption rates (SARs) pertinent to the expected position of the cells. A representative SAR rate (SAR per unit of input power) of 8.6 +/- 2.1 W/kg/W (95th percentile) was determined 1 mm from the bottom, for a 10 ml sample volume of standard medium. Evaluation of the cooling system demonstrated that following an initial 0.3 degrees C temperature increase, a constant temperature was maintained for 24 h when the waveguide was energized to achieve an average sample SAR of 10 W/kg. These properties enable both acute and sub-acute in vitro bio-effect studies to be performed on a variety of cell culture samples. 相似文献
20.
Douglas L. Miller 《Bioelectromagnetics》1994,15(5):483-487
Measuring internal induced electric fields in animals with a miniaturized probe involves a potential error related to the difference between the hole conductivity (σh) and the surrounding tissue conductivity (σt). Theory was developed to describe this phenomenon and checked by probe measurements in agar-filled petri dishes. The value measured in the hole is 2σt/(σh + σt) times the actual field in the tissue. For example, a probe hole in muscle, which is filled with blood, could yield a measurement only about 22% of the true value in the muscle. This potential source of error can be mitigated to some extent by not actually cutting a hole, by using a low-conductivity (e.g., 0.2 S/m) coupling medium in the hole, or by ensuring contact between the probe's electrodes and the tissue. © 1994 Wiley-Liss, Inc. 相似文献