首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paraquat and iron-dependent lipid peroxidation   总被引:3,自引:0,他引:3  
The aim of this work was to study the effect of paraquat (P2+) on NADPH iron-dependent lipid peroxidation (basal peroxidation) either in the presence of NADPH or in the presence of NADPH-generating systems. When NADPH is present, P2+ potentiates NADPH iron-dependent lipid peroxidation, but use of NADPH-generating systems cancels this effect. This may be attributed to certain components in NADPH-generating systems such as glucose-6-phosphate and sodium isocitrate, which act as iron chelators. The binding of iron by these molecules facilitates its reduction and enhances its reactivity toward dioxygen molecules, leading to the formation of reactive species capable of initiating lipid peroxidation, such as Fe3+-O 2 . Under these conditions of rapid basal peroxidation, any additional reduction of iron(III) by a reduced form of P2+ (P+.) has no apparent effect on the peroxidation itself, probably because the initial reaction between iron(II) and O2 followed by initiation of the peroxidation are both rate-limiting steps in the process. Consequently, any alteration of the composition of the reacting mixture (e.g., buffers or the generating system) must be taken into consideration because the formation of new iron chelates can change the rate of basal peroxidation and will modify the effect of redoxcycling molecules.  相似文献   

2.
The effect of various fatty acids on lipid peroxidation of liver microsomes induced by different methods in vitro was studied using oxygen uptake and malonaldehyde (MDA) production. It was observed that fatty acids with a single double bond are effective inhibitors of peroxidation. Stereo and positional isomers of oleic acid were equally effective as oleic acid. There was an absolute requirement for a free carboxyl group, since methyl esters of fatty acids and long-chain saturated and unsaturated hydrocarbons could not inhibit peroxidation. Saturated fatty acids with a chain length of 12-16 carbon atoms showed inhibition, whereas more than 18 carbon atoms reduced the inhibitory capacity. Fatty acids of lower chain length such as capric and caprylic acids did not show inhibition. Fatty acid inhibition was partially reversed by increasing the concentration of iron in the system. Peroxidation induced by methods which were independent of iron was not inhibited by fatty acids. It was observed that intestinal microsomes which were resistant to peroxidation due to the presence of nonesterified fatty acids in their membrane lipids were able to peroxidise by methods which do not require iron. These results suggest that certain fatty acids inhibit peroxidation by chelating available free iron. In addition, they may also be involved in competing with the esterified fatty acids in the membrane lipids which are the substrates for peroxidation.  相似文献   

3.
The effect of phospholipids on lipid peroxidation was investigated in liposomal suspension of egg yolk phosphatidylcholine. Both saturated and unsaturated phosphatidylserine effectively inhibited lipid peroxidation induced by ferrous-ascorbate system in the presence of phosphatidylcholine hydroperoxides. Studies on the iron trapping effect of phospholipids indicated that the effectiveness of inhibition depends on the charge of phosphatidylserine that binds to free ionic iron.  相似文献   

4.
In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) – a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and α-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM.  相似文献   

5.
Two representative compounds from a novel chemical series of potent inhibitors of lipid peroxidation are described. The compounds 21-[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]-16 alpha-methylpregna-1,4,9(11)-triene-3,20-dione monomethane sulfonate (U74006F) and 21-[4-(3,6-bis(diethylamino)-2-pyridinyl)-1-piperazinyl]-16 alpha-methylpregna-1,4,9(11)triene-3,20-dione hydrochloride (U74500A) inhibited lipid peroxidation in brain homogenates and purified brain synaptosomes under a variety of conditions involving iron. With IC50 values ranging from 2 to 60 microM, U74006F and U74500A were comparable in potency to alpha-tocopherol or butylated hydroxytoluene and were nearly 100 times as potent as desferrioxamine. Some specificity for intact phospholipid membranes is suggested since the ability of U74006F or U74500A to inhibit lipid peroxidation was greatly reduced in methanol solutions of arachidonic acid. Despite close similarities in their structures, their response to increasing concentrations of Fe2+ in lipid peroxidation assays differed qualitatively. One of the compounds, U74500A, may act as a membrane localized chelator of iron.  相似文献   

6.
As an index lipid peroxidation, thiobarbituric acid (TBA)-reactive substances in the liver, kidney, and serum, and hydrocarbons (ethane and pentane) in the exhalation of rats injected subcutaneously with 10 mg/kg/day of methylmercuric chloride (MMC) were determined. Formation of TBA-reactive substances in the liver and kidney of rats was significantly increased 4 and 2 days after initial injection of MMC, respectively. The result for serum was similar to that for the kidney. The maximum ethane production in the exhaled gases was observed 4 days after initial injection of MMC, and thereafter decreased slowly. Pentane production was significantly increased 5 days after initial injection of MMC, and thereafter continued to increase. Glutathione peroxidase activity and amount of vitamin C in the liver were depleted 4 days after initial injection of MMC; vitamin E was not depleted. In the kidney, significant decreases of glutathione peroxidase activity and vitamin C content were also seen 4 days after initial injection of MMC, but vitamin E content was unaltered.Thus, a clear increase of lipid peroxidation as determined by measurement of TBA-reactive substances in tissues and of hydrocarbons in the exhaled gases of rats after MMC treatment was demonstrated, though there was a lag phase of several days before the increase of lipid peroxidation. It is suggested that the significant increase of lipid peroxide formation may be a result of depletion of defending factors against lipid peroxidation.  相似文献   

7.
During pregnancy placenta is the most significant source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides and other ROS is often linked to pre-eclampsia. It is already proved that placental endoplasmic reticulum may be an important place of lipid peroxides and superoxide radical production. In the present study we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) inhibit placental aromatase--a key enzyme of estrogen biosynthesis in human placenta. We showed that significant inhibition of this enzyme is caused by small lipid peroxidation (TBARS (thiobarbituric acid-reactive substances)<4nmol/mg microsomal protein (m.p.)). More intensive lipid peroxidation (TBARS>9nmol/mg microsomal protein) diminishes aromatase activity to value being less than 5% of initial value. NADPH- and iron-dependent lipid peroxidation also causes disappearance of cytochrome P450 parallel to observed aromatase activity inhibition. EDTA, alpha-tocopherol, MgCl(2) and superoxide dismutase (SOD) prevent aromatase activity inhibition and cytochrome P450(AROM) degradation. Mannitol and catalase have not effect on TBARS synthesis, aromatase activity and cytochrome P450 degradation. In view of the above we postulate that the inhibition of aromatase activity observed is mainly a consequence of cytochrome P450(AROM) degradation induced by lipid radicals. The role of hydroxyl radical in cytochrome P450 degradation is negligible in our experimental conditions. The results presented here also suggest that the inhibition of aromatase activity can also take place in placenta at in vivo conditions.  相似文献   

8.
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than α-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than α-tocopherol; (e) to be a weaker antiradical than α-tocopherol in the reduction of the stable radical DPPH·. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like α-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

9.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

10.
In an effort to understand the properties of asbestos fibres that might contribute to their being toxic, we incubated three different varieties of asbestos with phospholipid emulsions and looked for evidence of lipid peroxidation. Although all three types of asbestos were able to catalyse lipid peroxidation in the native state, this catalytic activity was inhibited by pre-washing of the asbestos with the iron chelator desferroxamine. This suggests that: lipid peroxidation may be one of the mechanisms by which asbestos produces tissue injury, and treatment with iron chelators might diminish the potential to produce this injury.  相似文献   

11.
Two nitrofuran compounds, nifurtimox and nitrofurantoin, inhibited in a concentration-dependent manner the NADPH-, iron-induced lipid peroxidation in rat liver microsomes, as shown by the decreased rate of MDA accumulation. Other nitro compounds (benznidazole and chloramphenicol) were relatively inactive. Nifurtimox inhibition affected polyenoic fatty acids and cytochrome P-450 degradation that follows lipid peroxidation. The ascorbate- or tert-butyl hydroperoxide-dependent lipid peroxidations were much less inhibited than the NADPH-dependent one. Nifurtimox and nitrofurantoin, but not benznidazole and chloramphenicol, strongly stimulated the microsomal NADPH-oxidase activity, thus supporting electron diversion, as the main cause of the inhibition of peroxidation initiation.  相似文献   

12.
The peroxidation of membrane phospholipids induced in vitro by ascorbic acid or by dialuric acid (hydroxybarbituric acid) does not occur in the absence of traces of metal ions. Peroxidation induced by adding iron salts to phospholipids can either be promoted or inhibited by the chelators EDTA, diethylenetriaminepenta-acetic acid and bathophenanthrolinesulphonate, depending on the ratio [chelator]/[iron salt]. The iron chelator desferrioxamine inhibits peroxidation at all concentrations tested, and it also inhibits the iron-catalysed formation of hydroxyl radicals (OH.) from superoxide (O2-.). Since desferrioxamine is approved for clinical use, it might prove a valuable tool in the treatment of inflammation, poisoning by autoxidizable molecules and radiation damage.  相似文献   

13.
Human erythrocytes, briefly exposed to t-butylhydroperoxide and then incubated further in the absence of exogenous oxidant, undergo lipid peroxidation and formation of aqueous membrane leaks. Leak formation can be suppressed by various types of antioxidants and by desferrioxamine at concentrations at which lipid peroxidation still proceeds almost unaltered. This uncoupling of the two manifestations of an oxidative membrane damage indicates that loss of the barrier properties is not an obligatory consequence of the presence of peroxidized lipids in biological membranes.  相似文献   

14.
Ubiquinone incorporation into vesicles to evaluate its antioxidative effect on lipid peroxidation has been studied. Only sonication and not vortication allows comparable incorporation patterns of the various ubiquinone homologues into lipid vesicles. The measure of malondialdehyde, a convenient index for determining the extent of autoxidation, shows that both the naturally occurring homologues and synthetic shorter-chain ones, also in the oxidized form, possess similar antioxidant efficiency.  相似文献   

15.
It is shown that tetraphenylporphyrin (TPP) and its complexes with metals decrease the rate of the diene conjugate formation. The above compounds increase the malonic dialdehyde accumulation. The effect of TPP and its complexes with metals is connected with stimulation of lipid peroxidation in biomembranes.  相似文献   

16.
1. The extent of lipid peroxidation in vitro, as indicated by the production of malonaldehyde, was significantly different in homogenates of bovine and mouse intestinal mucosa. 2. Mouse intestinal mucosa was resistant to non-enzymatic lipid peroxidation whereas bovine intestinal mucosa was not. 3. Iron-dependent lipid peroxidation in bovine intestinal mucosa depends on the position the cells occupy along the crypt-villus axis. 4. The addition of methanolic extracts from bovine intestine to mouse liver homogenates produced a considerable increase in non-enzymatic peroxidation whereas those from mouse intestinal mucosa had no effect.  相似文献   

17.
The effects of lipid peroxidation on ADP-induced aggregation of washed rat platelets were examined using a oxygen-radical-generating system consisting of H2O2 and ferrous ion. Lipid peroxidation was assessed by measurement of thiobarbituric acid-reactive substances (TBARS). Incubation of the platelets with various concentrations of H2O2 (2-10 mM) in the presence of 10 microM Fe2+ resulted in a decrease of the aggregating capacity and an increase of TBARS value, depending on the concentrations of H2O2. Addition of catalase (0.1 mg/ml) to the incubation medium containing 10 microM Fe2+ and 10 mM H2O2 effectively protected the aggregating capacity, but superoxide dismutase (0.1 mg/ml) did not protect H2O2/Fe(2+)-induced inhibition of the platelet aggregation. The results of kinetic studies on the platelet aggregation with varying ADP and Ca2+ concentrations suggested that treatment of the platelets with H2O2/Fe2+ causes decreases in the binding affinities of ADP and Ca2+ for the platelets. On the basis of these results, change in the aggregating capacity of the platelets by treatment with H2O2/Fe2+ is discussed in relation to lipid peroxidation.  相似文献   

18.
Stress is shown to induce at first the generalized inhibition of lipid peroxidation (LPO), and then the activation of LPO. In brain and blood serum of rats subjected to continuous footshock as well as to restraint stress LPO products decreased and superoxide scavenging activity increased during the initial period of stress, after 1 hour of footshock LPO indices nearly reached normal values, and after 2 hours of footshock the accumulation of LPO products and decrease of superoxide scavenging activity were seen. LPO inhibition was accompanied by accumulation of easy oxidizable brain phospholipids and by depletion of brain cholesterol, during LPO activation brain cholesterol content and cholesterol-phospholipid ratio increased. The content of LPO products--fluorescent Schiff bases in blood plasma of women suffering from algomenorrhea at first decreased (O-12 h) and then dramatically increased (12-24 h) after a onset of pain at the beginning of menstruation. The data suggest that the stage of LPO inhibition precedes its activation during stress.  相似文献   

19.
2,2'-Azo-bis-(2-amidinopropane) induces the thermal lipid peroxidation of red blood cells membranes by a mechanism that is not iron dependent. The peroxidation rate, as assessed by oxygen uptake or visible chemiluminescence measurements, can be diminished by micromolar concentrations of desferrioxamine (DF), with a median inhibitory concentration (the concentration of DF that reduces the lipid peroxidation rate to 50% of that observed without scavengers addition) of 10 microM. In these conditions, the DF/Fe3+ (1:2) complex is nearly five times less efficient than DF. The present data show that DF is able to trap the initiator radicals and/or the free radicals involved in the lipid peroxidative chain at micromolar concentrations, range in which the agent cannot be used as a general test for iron involvement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号