首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
H. Smith  P.J. Wood  J. Gunn 《Hydrobiologia》2003,510(1-3):53-66
The macroinvertebrate fauna of five karst (limestone) springbrook systems with contrasting physical habitat and discharge patterns were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Clear physical differences were identified between perennial and intermittent springs and individual sampling stations. However, flow permanence, water temperature and the input of leaf litter exerted a greater influence on the aquatic invertebrate community than habitat structure. Perennial sites were characterised by a greater abundance of macroinvertebrates and greater Ephemeroptera, Plecoptera and Trichoptera (EPT) richness than intermittent sites. The fauna of all of the springbrook systems examined were dominated by relatively common and ubiquitous taxa (e.g. Gammarus pulex) although a number of taxa displaying life cycle adaptations to ephemeral aquatic habitats (e.g. Limnephilus auricula and Stenophylax permistus) were recorded at intermittent sites.  相似文献   

2.
Smith  H.  Wood  P.J. 《Hydrobiologia》2002,487(1):45-58
Limestone (karst) springs within the River Wye catchment (Derbyshire, U.K.) were investigated to examine the influence of physical and chemical characteristics and habitat variability on macroinvertebrate community composition. Flow permanence had a greater influence on the invertebrate community than any other physical or chemical variable examined. Clear differences in the macroinvertebrate community were observed between perennial (7) and intermittent springs (11) and the mainstem river. Springs support distinct communities, with some taxa exclusively recorded at the source or within the springbrook (e.g. Agabus guttatus [Paykull] and Micropterna lateralis [Stephens]). A degree of faunal overlap with the mainstem river occurred suggesting that perennial springs may form a refugium for many taxa and that intermittent springs are rapidly colonised by taxa from the mainstem river after the resumption of flow.  相似文献   

3.
1. The influence of hydraulic conditions on the spatial distribution of macroinvertebrate assemblages was investigated in three riffles in a perennial Australian river. 2. Velocity, depth and variability of substrate roughness were measured at each of 56 macroinvertebrate sampling locations. Complex hydraulic variables (roughness Reynolds number, shear velocity, Froude number) were calculated from combinations of two or three of the directly measured variables. The biological significance of directly measured and complex hydraulic variables was determined by a combination of univariate and multivariate statistical procedures. 3. Macroinvertebrate abundance, number of taxa and community composition were significantly different between the identified roughness Reynolds number, Froude number, velocity and shear velocity microhabitats throughout the studied riffles. 4. Regression analysis showed macroinvertebrate abundance and number of taxa were negatively related to roughness Reynolds number, shear velocity, velocity and Froude number. Depth was negatively related to abundance. In general, the majority of the macroinvertebrate community preferred the areas of riffles with the lowest near‐bed turbulence. 5. Roughness Reynolds number explained more of the spatial variation in invertebrate abundance, number of taxa and community composition than the other hydraulic variables, either directly measured or calculated. Of the directly measured variables, velocity had the greatest explanatory power, which was marginally less than roughness Reynolds number and shear velocity. 6. This study demonstrated that small‐scale differences in hydraulic conditions created by combinations of velocity, depth and substrate roughness have an important role in the spatial distribution of macroinvertebrate assemblages in riffle habitats.  相似文献   

4.
Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities.  相似文献   

5.
Temporary rivers within the Nyaodza-Gachegache subcatchment in northwestern Zimbabwe were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Macroinvertebrate communities of intermittent and ephemeral rivers displayed significant differences in the number of taxa, macroinvertebrate abundance, Shannon and Simpson diversity indices and in size class structure. Intermittent sites were characterised by higher numbers of taxa, diversity and Ephemeroptera and Trichoptera richness compared to ephemeral sites. The fauna of ephemeral sites was dominated by a single taxon (Afrobaetodes) (Ephemeroptera, Baetidae) whilst larger sized taxa (e.g. Elassoneuria (Ephemeroptera, Oligoneuriidae), Dicentroptilum (Ephemeroptera, Baetidae), Aethaloptera (Trichoptera, Hydropsychidae), Pseudagrion (Odonata, Coenagrionidae) and Tholymis (Odonata, Libellulidae) were exclusively restricted to intermittent sites. Clear differences were observed between sand, gravel, cobble and vegetation habitats. Vegetation and cobbles supported distinct communities, with some taxa exclusively restricted either to vegetation (e.g. Pseudagrion, Leptocerina (Trichoptera, Leptoceridae), Cloeon (Ephemeroptera, Baetidae), Afronurus (Ephemeroptera, Heptageniidae) and Povilla (Ephemeroptera, Polymitarcidae) or cobble (e.g. Aethaloptera and Dicentroptilum) habitats. In terms of ensuring optimum diversity within the subcatchment, we consider conservation of critical habitats (cobbles and vegetation) and maintenance of natural flows as the appropriate management actions. Handling editor: D. Dudgeon  相似文献   

6.
1. Comparative studies of distinct, but not ecologically isolated, systems such as lakes and streams may improve our understanding of the importance of ecological linkages in aquatic ecosystems. 2. In this study we compared the macroinvertebrate benthos of stony habitats in Swedish lakes and streams. Community composition was used to evaluate zoogeographic patterns and functional feeding guilds were used to identify mechanisms potentially affecting such patterns. 3. Stream communities were generally more diverse and species‐rich and had a higher proportion of grazers, shredders and passive‐filter feeders than lakes. Lake communities had a higher proportion of predators and collector‐gatherers. Of the 10 most common taxa, only Leptophlebia mayflies, clams (Sphaeriidae) and the isopod Asellus aquaticus were recorded in both lakes and streams. 4. Among‐site variance in macroinvertebrate communities accounted for by regional‐scale variables was low (6.4% for lakes and 10.1% for streams), compared with that by local‐scale variables (21% for lakes and 37.6% for streams). For lakes, the among‐site variance in macroinvertebrate communities was best explained by habitat‐scale characteristics followed by ecosystem, riparian, catchment, geographic position and ecoregion. For streams, the variance in macroinvertebrate communities was best explained by ecosystem characteristics followed by habitat, catchment, riparian, ecoregion and geographic position. 5. Conspicuous differences in spatial pattern were revealed between lakes and streams. For lakes, the most unequivocal differences in community composition and function occurred at the transition zone between the mixed forests in the south and the boreal coniferous forests in the north. Surprisingly, streams did not respond as strongly to profound landscape‐level differences in climate and vegetation cover. 6. The spatial differences noted between macroinvertebrate communities of lakes and streams may be because of differences in retention of detrital matter. Our findings imply that detrital inputs are qualitatively similar, but that the retention and processing of coarse particulate organic matter was presumably higher in lake littoral regions than in stream riffle habitats. 7. Although our findings support the conjecture that species distribution is determined fundamentally by conditions prevailing at the local‐scale, regional factors such as land use/type and the role of history were important and seemingly act as strong determinants of large‐scale patterns in biodiversity.  相似文献   

7.
There is still no assessment of the impact of sediment chemicals and environmental conditions on macroinvertebrates at the scale of the St. Lawrence River. In order to assess these impacts in the fluvial section of the St. Lawrence River including the Montreal harbour, the community structure of macroinvertebrates using different taxonomic aggregations (genus and family) and taxa attributes (abundance, presence–absence, indicator taxa) was assessed. The goal of the study was to determine the indicator taxa of macroinvertebrates along the fluvial continuum and relate changes in macroinvertebrate community to sediment chemical conditions and environmental characteristics of habitats using variance partitioning. This study also evaluated which taxonomic level and taxa attributes of macroinvertebrates were the most suitable for bioassessment of quality of sediments and habitat environment in the St. Lawrence River. Four different macroinvertebrate assemblages were found distributed along the fluvial continuum using either abundance or presence–absence data and genus or family levels. Indicator taxa characteristic of the different macroinvertebrate communities were associated with the sediment contamination gradient. However, habitat environmental characteristics (water masses, sulphur and DOC in sediments) had more influence on macroinvertebrate assemblages than sediment contamination. Our study confirms that family level analysis can give information comparable to the genus level analysis using presence–absence or abundance of macroinvertebrates, yet a higher number of indicator taxa were detected at the genus level.  相似文献   

8.
9.
Intermittent streams are common worldwide, and the ability of invertebrates to recover from floods and drought is a key feature of communities from these highly disturbed ecosystems. The macroinvertebrate assemblages of Kings Creek in northeastern Kansas were sampled regularly from four intermittent and two perennial sites over 2 years (1995–1996) to investigate the response and recovery to seasonal drying and floods. A 9mo drying period reduced taxa richness and density to 14% and 3% of pre-drying assemblages, respectively, in 1995–1996, whereas a 2mo drying period reduced richness by half and density to 4% of pre-drying assemblages in 1996. Floods at intermittent sites reduced densities and richness by 95% and 50%, respectively. A >50 y-flood reduced macroinvertebrate richness by 97% and density by >99% at a downstream perennial site. Resistance and resilience of total macroinvertebrate density was typically greater to floods than to drying, whereas resilience of taxa richness did not differ between disturbance types. The time required for recovery to pre-flood conditions (richness and density) was half as long (27 vs. 76 day) for intermittent sites compared to perennial sites. Colonization of intermittent sites was a function of distance from upstream refugia. Floods were a more important disturbance on assemblages in a downstream reach as compared to upstream reaches. In contrast, upstream reaches were more likely to dry. Recovery following flood and drought was dominated by colonization as opposed to tolerance, thus resilience is more important than resistance in regulating macroinvertebrate communities in these streams, and relative position in the landscape affects disturbance type, intensity, and ability of communities to recover from disturbance.  相似文献   

10.
Benthic macroinvertebrate communities were studied and environmental variables were measured in six rheocrene springs in Cantabria, northern Spain. Principal component analysis revealed two different spring types according to their physical and chemical characteristics. Springs from group A (GA) had higher temperature and conductivity, while springs in group B (GB) had higher values of pH, altitude, mean water velocity, percentage of boulders and coarse particulate organic matter. Total number of invertebrate taxa and individuals were not different between GA and GB springs. However, Shannon diversity index was significantly higher for GB springs. Analysis of similarities (ANOSIM) and non-metric multidimensional scaling (NMDS) analysis indicated that invertebrate assemblages from GA and GB springs were different. The snails Theodoxus fluviatilis and Bythinella sp., and the amphipod Echinogammarus spp. had higher densities in GA springs, whereas ephemeropterans, plecopterans, trichopterans and chironomids were more important in GB springs. Higher water velocities in GB springs interacting with predation by Echinogammarus tarraconensis may be responsible for the observed patterns on invertebrate community structure and composition. The taxonomic resolution limited our ability to detect crenobiontic taxa. Sampling aquatic, semi-aquatic and semi-terrestrial habitats are needed to account for the biodiversity patterns of spring habitats.  相似文献   

11.
  1. Mountain streams in southwestern European Alps are currently shifting from perennial to intermittent flow due to the combined effects of climate change and local anthropogenic pressures. Given that flow intermittency is a recently documented phenomenon in the Alps, only scattered studies have investigated functional and taxonomical diversity of benthic invertebrate communities in recently intermittent Alpine streams.
  2. We used a hierarchical sampling design to investigate patterns in taxonomic and functional diversity of benthic invertebrate communities in 13 recently intermittent Alpine streams in north-west Italy. in April 2017, we sampled benthic communities in two reaches of each stream with different hydrological conditions: a control reach, with permanent flow; and an intermittent reach, which recently experienced non-flow periods in summer.
  3. We tested for the response of taxonomic richness at multiple spatial scales by partitioning total diversity into the average richness of local communities and the richness due to variation among local communities both within and among reaches. By partitioning total diversity (γ) into its local (α) and turnover (β) components we showed a decrease in local and regional species richness both within and among reaches, whereas variation among communities was significantly lower in intermittent reaches at the reach scale only.
  4. The analysis of multidimensional trait space of macroinvertebrate communities in reaches with different hydrological conditions revealed a significant reduction of functional diversity, dispersion, and evenness in intermittent reaches. There was trait overdispersion in intermittent reaches, as these hosted both typical Alpine taxa and organisms adapted to flow intermittency. In particular, we observed the replacement of taxa with aquatic respiration and those preferring medium- to fast-flowing oligotrophic waters by taxa adapted to lentic habitats, air breathing and with larval dormancy phases.
  5. These results indicate that recent flow intermittency has caused drastic changes in benthic invertebrate communities in Alpine streams. Our work highlights the importance of integrating taxonomic and functional diversity to thoroughly assess the impacts of flow intermittency.
  相似文献   

12.
13.
14.
Streams in mediterranean regions have highly seasonal discharge patterns, with predictable torrential floods and severe droughts. In contrast, discharge is less variable in temperate regions and intermittent flow conditions are uncommon. Hydroclimatic models predict that climate change would increase frequency and severity of floods and droughts across Europe, thus increasing the proportion of streams with mediterranean characteristics in actually temperate areas. Correspondingly, understanding actual ecological differences between mediterranean and temperate streams may help to anticipate large‐scale ecological impacts of climate change. Given that large‐scale factors determine local community composition, we hypothesized that climatic differences between mediterranean and temperate regions should affect the taxonomic and biological trait composition in streams. We assembled the abundance of stream macroinvertebrate genera of 265 sites each from the Mediterranean Basin and from temperate Europe and linked these abundances to published information on 61 categories of 11 biological traits reflecting the potential of resilience from and resistance to disturbances. Although regional taxonomic richness was higher in the mediterranean than in the temperate region, local taxonomic richness and diversity did not significantly differ between regions. Local trait richness and diversity were significantly higher in the mediterranean region. Both local taxonomic and trait‐community composition differed between regions, but the former varied much more than the latter, highlighting that climate change could produce large changes in the taxonomic but rather weak changes in the trait composition. The mediterranean region was characterized by macroinvertebrates with higher dispersion and colonization capabilities, suggesting that species loss in the temperate region, by extinction or northward emigration of taxa, would be compensated for by immigration of southern mediterranean taxa. Thus, climate change would likely have stronger implications for the local conservation of taxa than for the trait composition of stream macroinvertebrate communities.  相似文献   

15.
1. Water withdrawal for irrigated agriculture is one of the leading uses of freshwater resources in the world; however, effects of low flow disturbances on lotic ecosystems are poorly understood. We studied an intensively managed agricultural catchment to determine: (i) how macroinvertebrate assemblages and environmental variables respond to water withdrawals of varying magnitude and duration; (ii) what environmental variables are associated with macroinvertebrate responses and (iii) the resiliency of macroinvertebrate communities to irrigation water withdrawals. 2. We sampled above and below four irrigation diversions that create a gradient of increasing water withdrawal from upstream to downstream (i.e. 0%, 22%, 87%, 90% and 97% water withdrawn) along a 36 km river section. Three reaches were sampled above and below each point of diversion from June to September 2004 and 2005, which represented average and drought water conditions respectively. 3. Irrigation water withdrawals were associated with both direct and indirect changes to the physicochemical environment. Direct effects (e.g. decreased velocity, depth and wetted habitat) were approximately proportional to the amount of water withdrawn, while indirect effects (e.g. increased conductivity and temperature) occurred when water withdrawals exceeded 85% of ambient levels. 4. Changes in macroinvertebrate communities were more strongly related to indirect than direct effects of irrigation water withdrawals. In an average water year, community changes were associated with interacting thresholds of reduced discharge and increased conductivity. During a drought year, community changes were related to the interacting thresholds of reduced discharge and increased temperature. 5. Between years, macroinvertebrate responses differed with the magnitude and duration of low flow conditions. In 2004, high‐intensity, relatively short‐duration water withdrawals (<2 months) and alterations to the physicochemical environment changed the relative abundance of macroinvertebrate communities, while macroinvertebrate indices and proportional abundances of functional feeding groups remained unchanged. In contrast, discharge reductions exceeding 90% of ambient levels and temperatures above 30 °C from July to September 2005 were associated with shifts in community composition from a dominance of collector‐gatherer and filterer Ephemeroptera, Plecoptera and Trichoptera taxa to predatory insects, non‐insect taxa and scraping elmid beetles. 6. On an annual basis macroinvertebrate communities appeared resilient to the impacts of water withdrawals following winter high flows. In contrast, recovery was not observed after discharge and physicochemical variables returned to predisturbance conditions for only one month. 7. Irrigation water withdrawals appear to impact macroinvertebrates through indirect effects that intensify with the magnitude and duration of water withdrawals and annual water availability. Preserving environmental conditions within natural ranges of variability, especially during low water years, appears critical to mitigating adverse biological responses to water withdrawals.  相似文献   

16.
17.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

18.
Sampling variability and colonization rate of introduced substrates (plastic trays filled with pebble and cobble) in two southwestern Virginia streams are described. Substrates were rapidly colonized by aquatic macroinvertebrates, but colonization rates differed between years, possibly due to annual variability in macroinvertebrate abundance. To examine the applicability of using these substrates for biomonitoring benthic communities, trays were placed at several locations in a river receiving power plant discharges. Only six samples were necessary to detect a 15%reduction in macroinvertebrate density and a 12% reduction in number of taxa at effluent sites. Benthic communities established on rock-filled trays and multiplate samplers collected from the same stations during the same period were compared. Although multiplate samplers were more variable than rock trays and were selective for different taxa, both substrate types showed significant differences in community parameters among locations. Rock trays at all sites were dominated by Cheumatopsyche sp., whereas chironomids were more abundant on multiplate samplers. The relative abundance of mayflies was reduced at the effluent site on both substrate types.  相似文献   

19.
Buruli ulcer (BU) is an emerging, but neglected tropical disease, where there has been a reported association with disturbed aquatic habitats and proposed aquatic macroinvertebrate vectors such as biting Hemiptera. An initial step in understanding the potential role of macroinvertebrates in the ecology of BU is to better understand the entire community, not just one or two taxa, in relation to the pathogen, Mycobacterium ulcerans, at a large spatial scale. For the first time at a country-wide scale this research documents that M. ulcerans was frequently detected from environmental samples taken from BU endemic regions, but was not present in 30 waterbodies of a non-endemic region. There were significant differences in macroinvertebrate community structure and identified potential indicator taxa in relation to pathogen presence. These results suggest that specific macroinvertebrate taxa or functional metrics may potentially be used as aquatic biological indicators of M. ulcerans. Developing ecological indicators of this pathogen is a first step for understanding the disease ecology of BU and should assist future studies of transmission.  相似文献   

20.
1. Invertebrate assemblages were described for nine floodplain sites located on a longitudinal gradient of river discharge in the Altamaha River catchment. The Altamaha River and its tributaries constitute one of the few remaining ‘unregulated’ catchments in the southeastern U.S. We predicted that, as the character of lateral flood pulses into backwater swamps changed along the discharge gradient, so would the structure of invertebrate communities. We also examined the relationship between invertebrate assemblages and physicochemical factors (degree of floodplain inundation, pH, conductivity and nutrient concentrations). 2. Cluster analyses of both invertebrate abundance and biomass separated the nine sites into three groups corresponding to their positions in the catchment (upper, mid‐ and lower reach clusters). Non‐metric multidimensional scaling ordinations further corroborated the groupings (with combined axis scores of 92% and 73% for abundance and biomass, respectively) and showed significant correlations with degree of inundation and conductivity (abundance), and conductivity, nitrate and phosphate concentrations (biomass). 3. Floodplains in the upper reaches were dominated by terrestrial taxa, such as earthworms, oribatid mites, collembolans and assorted terrestrial fly larvae, and some rapidly developing aquatics (harpacticoid crustaceans and mosquitoes). In the mid‐reach, the dominant taxa were longer lived aquatic organisms such as mayflies and aquatic oligochaetes, although some terrestrial organisms (elaterid beetles and mites) were still common. Invertebrate families dependent on water flow, such as riffle beetles and some mayflies, were common only in mid‐reach floodplain sites. Lower reaches were dominated by lentic aquatic taxa such as dytiscid beetles and asellid isopods, which commonly persist in wetlands after they dry. 4. Our study indicates that invertebrate community structure varies predictably among floodplains in the Altamaha catchment, with headwater habitats being dominated by terrestrial and rapidly‐developing aquatic invertebrates, mid‐reaches characterised by an influx of invertebrates from the river and lower reaches being dominated by wetland taxa with desiccation‐resistant stages. This spatial variability should be considered when applying the Flood Pulse Concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号