首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant lectin, IB4, binds to the surfaces of primary afferent neurons of the dorsal root and trigeminal ganglia and is documented to be selective for nociceptive neurons. Physiological data suggest that the intrinsic primary afferent neurons within the intestine are also nociceptors. In this study, we have compared IB4 binding to each of these neuron types in the guinea-pig. The only neurons in the intestine to be readily revealed by IB4 binding have Dogiel-type-II morphology; these neurons have been previously identified as intrinsic primary afferent neurons. Most of the neurons that are IB4-positive in the myenteric plexus are calbindin-immunoreactive, whereas those in the submucosal ganglia are immunoreactive for NeuN. The neurons that bind IB4 strongly have a similar appearance in enteric, dorsal root and trigeminal ganglia. Binding is to the cell surface, to the first part of axons and to cytoplasmic organelles. A low level of binding was found in the extracellular matrix. A few other neurons in all ganglia exhibit faint staining with IB4. Strongly reactive neurons are absent from the gastric corpus. Thus, IB4 binding reveals primary afferent neurons with similar morphologies, patterns of binding and physiological roles in enteric, dorsal root and trigeminal ganglia.This work was supported by a grant from the National Health and Medical Council of Australia.  相似文献   

2.
The plant lectin, IB4, binds to primary afferent neurons of dorsal root and trigeminal ganglia, where it is selective for nociceptive neurons. In the enteric nervous system of the guinea-pig IB4 labels intrinsic primary afferent neurons, which are believed to have roles as nociceptors. Here we investigate whether IB4 binding is also a marker of intrinsic primary afferent neurons in the mouse. Neurons that bound IB4 were common in the enteric plexuses of the small intestine and colon. Labeled neurons were rare in the stomach, and absent from the esophagus and gallbladder. Binding was to the cell surface, initial parts of axons and to clumps in the cytoplasm. Similar binding occurred on small and medium sized neurons of dorsal root, nodose and trigeminal ganglia. In the enteric nervous system, IB4 revealed large round or oval (type II) neurons, type I neurons with prominent laminar dendrites and small neurons of myenteric ganglia. The type II neurons were immunoreactive for calretinin, and some type I neurons were immunoreactive for nitric oxide synthase. Most neurons in the submucosal ganglia bound IB4, and some of these were vasoactive intestinal peptide immunoreactive. Thus IB4 binds to specific subgroups of enteric neurons in the mouse. These include intrinsic primary afferent neurons, but other neurons, including secretomotor neurons, are labeled. The results suggest that IB4 is not a specific label for enteric nociceptive neurons.  相似文献   

3.
Autoregulatory mechanisms affecting serotonin [5-hydroxytryptamine (5-HT)] release and synthesis during the early period of development were investigated in dissociated cell cultures raised from embryonic rostral rat rhombencephalon. The presence of 5-HT1A and 5-HT1B receptors in serotoninergic neurons was assessed using binding assays. The involvement of 5-HT1A and 5-HT1B receptors in the control of the synthesis and release of [3H]5-HT was studied using biochemical approaches with several serotoninergic receptor ligands. A mean decrease of 30% in [3H]5-HT synthesis and release was observed in the presence of 5-HT (10(-8) M), the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5HT1B/1A agonist 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), the 5-HT1B agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP-93,129), and the 5-HT(1D/1B) agonist sumatriptan. Inhibition of 5-HT synthesis and release induced by 8-OH-DPAT was blocked by chiral N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropionam ide dihydrochloride quaternary-hydrate (WAY 100135) (10(7) M) or methyl 4-[4-[4-(1,1,3-trioxo-2H-1,2-benzoisothiazol-2-yl)butyl]-1-p iperazinyl]-1Hindole-2-carboxylate (SDZ 216-525) (10(-7)M), and that of CP-93,129 was blocked by methiothepin (10(-7) M). Paradoxically, extracellular levels of [3H]5-HT increased in the presence of 8-OH-DPAT and RU 24969 at 10(-6) M. 5-HT uptake experiments showed that these two agonists interacted with the 5-HT transporter. 5-HT1 binding sites (620 fmol/mg of protein) and 5-HT1A (482 fmol/mg of protein) and 5-HT1B (127 fmol/mg of protein) receptors were detected in 12-day in vitro cell cultures. Experiments carried out with tetrodotoxin suggested that 5-HT1A receptors are located on nerve cell bodies, whereas 5-HT1B receptors are located on the nerve terminals. We concluded that autoregulatory mechanisms involving 5-HT1A and 5-HT1B autoreceptors are functionally mature in cells from rostral raphe nuclei during the early period of development.  相似文献   

4.
Summary The intestine of Aldrichetta forsteri was examined ultrastructurally for evidence of 5-HT-containing intrinsic neurons. A population of nerve cell bodies and processes characterized by the presence of amine-containing vesicles was found after the destruction of adrenergic processes with 6-hydroxydopamine. The distribution of the neurons matched that of the 5-HT-containing neurons previously seen with formaldehyde-induced fluorescence and 5-HT immunohistochemistry in A. forsteri and other teleosts. The axons made close contacts with the circular smooth muscle layer and the muscularis mucosae. The axons also lay exposed to the epithelial cells of the mucosa but did not make contact with neurons or with the longitudinal smooth muscle layer.  相似文献   

5.
In many organs, different protein kinase C (PKC) isoforms are expressed in specific cell types, suggesting that the different PKCs have cell-specific roles, and also that drugs acting on a particular PKC may have effects on the whole organ that are distinguishable from drugs that target other isoforms. Previous studies of the guinea-pig and mouse intestine indicate that there are cell-specific expressions of PKC isoforms in neurons, muscle and the interstitial cells of Cajal. In the present study we have investigated the expression of different PKCs in human intestine. Immunohistochemical studies showed that the forms that are prominent in human enteric neurons are PKCs γ and ε and in muscle the dominant form is PKCδ. Neurons were weakly stained for PKCβI. These observations parallel findings in guinea-pig and mouse, except that in human PKCγ-IR was not present in the same types of neurons that express it in the guinea-pig. Enteric glial cells were strongly immunoreactive for PKCα, which is also the major isoform in enteric glial cells of guinea-pig. In human and guinea-pig, glial cells also express PKCβI. Spindle-shaped cells in the mucosa were immunoreactive for PKCα and PKCγ and in the muscle layers similar cells had PKCγ-IR and PKCθ-IR. The spindle-shaped cells were similar in morphology to interstitial cells of Cajal. Western analysis and RT-PCR confirmed the presence of the PKC isoform proteins and mRNA in the tissue. We conclude that there is cell-type specific expression of different PKCs in enteric neurons and intestinal muscle in human tissue, and that there are strong similarities in patterns of expression between laboratory animals and human, but some clear differences are also observed.  相似文献   

6.
目的:本研究主要是探索高浓度的Shh对后脑5-HT神经元数量的影响。方法:通过免疫荧光和原位杂交手段检测Shh在脑干的表达情况。离体培养5-HT神经元,用不同浓度Shh蛋白处理,观察5-HT神经元的数量变化以及对轴突的影响。通过胚胎宫内电转,检测Shh过表达后脑5-HT神经元的数量变化。结果:Shh在脑干5-HT神经元分布区域内表达。离体培养的5-HT神经元,250 ng/m L的Shh蛋白处理后神经元数量为41.25±0.52(n=4,P=0.0218),与对照组35±1.21(n=4)相比,神经元数量上调。相反,1250 ng/m L的Shh蛋白处理后神经元数量为7.5±0.43(n=4,P0.0001),与对照组相比,神经元数量极显著下降。250 ng/m L的Shh蛋白处理后5-HT神经元轴突长度为1.08±0.05(n=4,P=0.7555),与对照组1±0.01(n=4)相比,轴突长度没有显著性差异。然而1250 ng/m L的Shh蛋白处理后5-HT神经元轴突长度为0.44±0.03(n=4,P=0.0014),与对照组相比,轴突长度极显著缩短。胚胎宫内电转p IRES-Shh-EGFP和p IRES-EGFP,观察到Shh过表达缝核上行5-HT神经元数量为147±54.2(n=4,P=0.0053),相较于对照组459±49.0(n=4),神经元数量极显著下降。同样地,Shh过表达缝核下行5-HT神经元数量为187±18.4(n=4,P=0.0001),相较于对照组411±17.3(n=4),神经元数量也发生了极显著下降。结论:Shh过表达对5-HT神经元的发育有负向的调控作用,主要表现在引起后脑缝核5-HT神经元数量减少。  相似文献   

7.
Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.  相似文献   

8.
The presence of 5-hydroxytryptamine in enteric neurons of the guinea-pig distal colon was demonstrated by immunohistochemistry and the projections of the neurons were determined. 5-Hydroxytryptamine-containing nerve cells were observed in the myenteric plexus but no reactive nerve cells were found in submucous ganglia. Varicose reactive nerve fibres were numerous in the ganglia of both the myenteric and submucous plexuses, but were infrequent in the longitudinal muscle, circular muscle, muscularis mucosae and mucosa. Reactivity also occurred in enterochromaffin cells. Lesion studies showed that the axons of myenteric neurons projected anally to provide innervation to the circular muscle and submucosa and to other more anally located myenteric ganglia. The results suggest that a major population of 5-hydroxytryptamine neurons in the colon is descending interneurons, most of which extend for 10 to 15 mm in the myenteric plexus and innervate both 5-hydroxytryptamine and non-5-hydroxytryptamine neurons.  相似文献   

9.
Summary Galanin immunoreactivity was observed in nerve cell bodies and nerve fibres, but not in enteroendocrine cells, in the small intestine of the guinea-pig. Nerve terminals were found in the myenteric plexus, in the circular muscle, in submucous ganglia, around submucous arterioles, and in the mucosa. Lesion studies showed that all terminals were intrinsic to the intestine; those in myenteric ganglia arose from cell bodies in more orally placed ganglia. Myenteric nerve cells were also the source of terminals in the circular muscle. Galanin (GAL) was located in a population of submucous nerve cell bodies that also showed immunoreactivity for vasoactive intestinal peptide (VIP) and in a separate population that was immunoreactive for neuropeptide Y (NPY). Processes of the GAL/VIP neurons supplied submucous arterioles and the mucosal epithelium. Processes of GAL/NPY neurons ran to the mucosa. It is concluded that galanin immunoreactivity occurs in several functionally distinct classes of enteric neurons, amongst which are neurons controlling (i) motility, (ii) intestinal blood flow, and (iii) mucosal water and electrolyte transport.  相似文献   

10.
Projections and chemistry of Dogiel type II neurons in the mouse colon   总被引:1,自引:0,他引:1  
The physiological properties, shapes, projections and neurochemistries of Dogiel type II neurons have been thoroughly investigated in the guinea-pig intestine in which these neurons have been identified as intrinsic primary afferent neurons. Dogiel type II neurons in the myenteric ganglia of mice have similar physiological properties to those in guinea-pigs but whether other features of the neurons are similar is unknown. We have used intracellular dye-filling, retrograde tracing, immunohistochemistry and nerve lesions to determine salient features of Dogiel type II neurons of the mouse colon. Dye-filling showed that the neurons provide profuse terminal networks in the myenteric ganglia and also have axons that project towards the mucosa. Retrograde tracing and lesion studies showed that these axons provide direct innervation to the mucosa. High proportions of the neurons had immunoreactivity for calretinin, calbindin, choline acetyltransferase, the purine P2X2 receptor and calcitonin gene-related peptide (CGRP). CGRP was the most selective marker of the neurons. Following surgery to remove an area of myenteric plexus, the CGRP-immunoreactive nerve fibres in the mucosa degenerated. Thus, Dogiel type II neurons in mice have similar shapes and projections but some differences in chemistry from those in guinea-pigs. The close similarities between the two species in the shapes, projections and electrophysiology of these neurons suggest that they serve the same functions in both species.These studies were funded by the National Health and Medical Research Council (Australia)  相似文献   

11.
Several variants of the serotonin 5-HT4 receptor are known to be produced by alternative splicing. To survey the existence and usage of exons in humans, we cloned the human 5-HT4 gene. Based on sequence analysis seven C-terminal variants (a-g) and one internal splice variant (h) were found. We concentrated in this study on the functional characterization of the novel splice variant h, which leads to the insertion of 14 amino acids into the second extracellular loop of the receptor. The h variant was cloned as a splice combination with the C-terminal b variant; therefore, we call this receptor 5-HT4(hb). This novel receptor variant was expressed transiently in COS-7 cells, and its pharmacological profile was compared with those of the previously cloned 5-HT4(a) and 5-HT4(b) isoforms, with the latter being the primary reference for the h variant. In competition binding experiments using reference 5-HT4 ligands, no significant differences were detected. However, the broadly used 5-HT4 antagonist GR113808 discriminated functionally among the receptor variants investigated. As expected, it was an antagonist on the 5-HT4(a) and 5-HT4(b) variant but showed partial agonistic activity on the 5-HT4(hb) variant. These data emphasize the importance of variations introduced by splicing for receptor pharmacology and may help in the understanding of conflicting results seen with 5-HT4 ligands in different model systems.  相似文献   

12.
Two techniques that are thought to stain all of the neurons in the myenteric ganglia of the intestine are NADH diaphorase histochemistry and immunhistochemistry using a nerve cell body antiserum. However, this assumption has never been directly verified. In the present study myenteric ganglia of the guinea-pig ileum were prepared as whole-mounts and stained with either of these techniques. All nerve cells that could be identified in the whole-mounts were counted. The whole-mounts were then embedded flat in resin and serially sectioned at 1 m. Nerve cells were identified and counted from the serial sections, and the data compared to those obtained from the whole-mounts. NADH diaphorase histochemistry did not reveal all the neurons at incubation times that gave selective staining. In contrast, nerve cell body antiserum stained the entire neuronal population. To determine the total number of nerve cell bodies/ganglion and the proportion of nerve cell bodies with calbindin immunoreactivity, whole-mounts that had been processed for calbindin immunohistochemistry were serially sectioned and reconstructed. The total number of neurons per myenteric ganglion was 105±10 (SE). Calbindin-immunoreactive neurons comprised about 20% of the myenteric neurons, which is considerably less than previous estimates, because previously the total population has been underestimated. The spatial density of myenteric neurons in the undistended ileum of the guinea-pig is 17300 nerve cells/cm2.  相似文献   

13.
The purpose of this study was to determine the effect of methysergide, ketanserin, granisetron, cisapride, and renzapride on serotonin 5-hydroxytryptamine-evoked short-circuit current in muscle and myenteric plexus-stripped pig jejunum using the Ussing chamber technique. Ketanserin, granisetron, cisapride, and renzapride all reduced the 5-hydroxytryptamine-induced increase in short-circuit current by about 50%. Combination of ketanserin and granisetron only reduced the 5-hydroxytryptamine-induced peak increase in short-circuit current by 25%. Cisapride caused a small concentration-dependent increase in short-circuit current. Atropine and hexamethonium both almost completely suppressed the cisapride-induced peak increase in short-circuit current. Ketanserin, granisetron, methysergide, and renzapride did not alter the basal short-circuit current. These results suggest that 5-hydroxytryptamine elicits an increase in short-circuit current by activating epithelial and submucosal 5-hydroxytryptamine2 and 5-hydroxytryptamine3 receptor subtypes. Furthermore, the short-circuit current-increasing effect of cisapride, is due to activation of at least muscarinic and nicotinic receptors.Abbreviations 5-HT 5-hydroxytryptamine, serotonin - AUC area under the curve - EC enterochromaffin - ENS enteric nervous system - GI gastrointestinal - MW molecular weight - 5-HTP-DP N-acetyl-5-hydroxytryptophyl-5-hydroxytrytophan amide - SSC short-circuit current - TTX tetrodotoxin  相似文献   

14.
This study aimed at estimating the proportion of human myenteric Dogiel type II neurons, putative intrinsic primary afferent neurons (IPANs), in relation to the entire myenteric neuron population. Since, at present, there is no known single marker, which specifically labels these neurons, we tried to identify the most appropriate marker combination based on the results of an earlier study. For this purpose, 10 wholemounts derived from human small intestinal segments were immunohistochemically triple-stained for calretinin (CALR), somatostatin (SOM) and neurofilaments (NF) and 9 were stained for substance P (SP), SOM and NF. In each wholemount, 15 ganglia selected randomly were evaluated. On the basis of their NF-reactivity, neurons reactive for one or co-reative for both of the other two markers, respectively, were morphologically classified as type II or non-type II neurons. We found that the majorities of neurons co-reactive for CALR/SOM and SP/SOM, respectively, were type II neurons whereas this was not the case for neurons, which were reactive for only one of the two markers. One of the statistical parameters estimated was the positive predictive value, the probability that a neuron displaying CALR/SOM- or SP/SOM-co-reactivity, respectively, is a type II neuron. This value was 97% in case of CALR/SOM- and 95% in case of SP/SOM-co-staining. Although the difference of the statistical parameters between the two stainings was not significant, CALR and SOM were used to estimate indirectly the proportion of type II neurons, in wholemounts co-stained with the pan-neuronal marker neuronal protein HuC/HuD (HU). In these wholemounts, altogether 9.1% of neurons were coreactive for CALR/SOM. We suggest that the proportion of myenteric type II neurons in the human small intestine is related to the proportion of CALR/SOM-co-reactive neurons and may be near to one tenth of the total myenteric neuronal population.  相似文献   

15.
16.
Summary The stomach, small intestine and large intestine of the toad, Bufo marinus, were processed for formaldehyde-induced fluorescence histochemistry. After extrinsic denervation or pretreatment with 6-hydroxydopamine to remove catecholamine fluorescence, yellow fluorescence typical of 5-hydroxytryptamine was observed in neurones in the small intestine only. The cell bodies and their processes were confined to the myenteric plexus. Additional pretreatment with 5-hydroxytryptamine enhanced the fluorescence of neurones in the small intestine and revealed yellowfluorescent nerve fibres, but not cell bodies, in the longitudinal and circular muscle layers and myenteric plexus of the large intestine. No fluorescent neurones were observed in the stomach. Following reserpine treatment, which removed native yellow fluorescence in the small intestine, exposure to 5-hydroxytryptophan produced yellow fluorescence in axons in both small and large intestine; exposure to tryptophan never restored fluorescence. The neurotoxin, 5,7-dihydroxytryptamine had no effect on the distribution of yellow-fluorescent neurones in the small and large intestine. No 5-HT-containing mast cells were present in either the small or large intestine. Thin layer chromatography with three different mobile phases showed a 5-hydroxytryptamine-like compound in extracts of mucosa-free small and large intestine but not of stomach.  相似文献   

17.
Summary Neuromedin U immunoreactivity was located histochemically in the guinea-pig small intestine. Projections of immunoreactive neurons were determined by analysing patterns of degeneration following nerve lesions. The co-localization of neuromedin U immunoreactivity with immunoreactivity for substance P, neuropeptide Y, vasoactive intestinal peptide and calbindin was also investigated. Neuromedin U immunoreactivity was found in nerve cells in the myenteric and submucous plexuses and in nerve fibres in these ganglionated plexuses, around submucous arterioles and in the mucosa. Reactive fibres did not supply the muscle layers. Most reactive nerve cells in the myenteric ganglia had Dogiel type-II morphology and in many there was co-localization of calbindin, although some Dogiel type-II neuromedin U neurons were calbindin negative. Lesion studies suggest that these myenteric neurons project circumferentially to local myenteric ganglia. Projections from myenteric neurons also run anally in the myenteric plexus, while other projections extend to submucous ganglia, and still further projections run from the intestine to provide terminals in the coeliac ganglia. In the submucous ganglia neuromedin U was co-localized in three populations of nerve cells: (i) those with vasoactive intestinal peptide immunoreactivity, (ii) neurons containing neuropeptide Y, and (iii) neurons containing substance P. Each of these populations sends nerve fibres to the mucosa. Neuromedin U immunoreactivity is thus located in a variety of neurons serving different functions in the intestine and therefore probably does not have a single role in intestinal physiology.  相似文献   

18.
Summary The dynamics of horseradish peroxidase (HRP) transport in primary sensory neurons were studied in rats by demonstration of the reaction product in spinal nerves, spinal ganglia, dorsal roots and in the spinal cord at different survival times after application of the enzyme to the transected sciatic nerve and to the spinal cord. Using tetramethylbenzidine as the chromogen according to Mesulam (1978), transganglionic transport of HRP was shown in both the disto-proximal direction after peripheral application, and proximo-distal direction after central application. Significant differences in staining intensity between the central and peripheral processes of primary sensory neurons were found after all survival times used in this study. After peripheral application the number of labeled axons and the staining intensity were higher in spinal nerves than in dorsal roots; an inverse situation occurred after central application. These differences as well as the time sequences in staining of different parts of primary sensory neurons suggest that HRP applied to a peripheral nerve and to the spinal cord, respectively, enters the perikarya of spinal ganglion cells in any case before continuing its movement in a cellulifugal direction. Lysosomal degradation of the major portion of the applied HRP is supposed. However, in the post-perikaryal portion of a considerable number of neurons HRP-transport still occurs to a varying extent, thus resulting in labeling of nerve endings. In some neurons a post-perikaryal transport could not be detected light microscopically. The transport rates differ: the calculated transport rate of disto-proximal, cellulipetal movement in the fastest transporting neurons was 7.5 mm/h, that of the disto-proximal cellulifugal movement 2.5 to 3 mm/h.This work was partly supported by the Hartmann Müller-Stiftung I want to thank Miss Regula Eichholzer for the technical assistance  相似文献   

19.
Abstract: We have examined the ligand binding site of the serotonin 5-HT6 receptor using site-directed mutagenesis. Replacing the highly conserved Asp106 in transmembrane region III by asparagine eliminated d -[3H]lysergic acid diethylamide ([3H]LSD) binding to the mutant receptor transiently expressed in HEK293 cells. The potency of 5-HT and LSD to stimulate adenylyl cyclase was reduced by 3,600- and 500-fold, respectively, suggesting that an ionic interaction between the positively charged amino group of 5-HT and D106 is essential for high-affinity binding and important for receptor activation. In addition, basal cyclic AMP levels in cells expressing this mutant were increased. Mutation of a tryptophan residue one helix turn toward the extracellular side of transmembrane region III (Trp102) to phenylalanine produced significant changes in the binding affinity and potency of several ligands, consistent with a role of this residue in the formation of the ligand binding site. The exchange of two neighboring residues in the carboxy-terminal half of transmembrane region VI (Ala287 and Asn288) for leucine and serine resulted in a mutant receptor with increased affinities (seven- to 30-fold) for sumatriptan and several ergopeptine ligands. The identification of these interactions will help to improve models of the 5-HT6 receptor ligand binding site.  相似文献   

20.
白斑迷蛱蝶视觉系统中GABA和5-HT能神经元的分布   总被引:1,自引:0,他引:1  
牛华  李一娜  暴学祥 《动物学报》2004,50(5):770-777
采用树脂石蜡(Colophony-Paraffin,CP)组织包埋切片技术和链霉菌抗生物素蛋白一过氧化物酶(Streptavidin—peroxidase,SP)免疫组织化学方法,首次报道了GABA和5-HT两种神经递质在白斑迷蛱蝶视觉系统(复眼及视叶)中的分布。与以往所报道的昆虫不同,白斑迷蛱蝶复眼中部分光感细胞对GABA和5-HT抗血清产生免疫反应。每侧视叶中约有2600多个GABA能阳性神经元,它们共分为6群。其中3群位于外髓附近(M1-3),另外三群位于内髓复合体边缘(LC1-3)。GABA能神经元发出的轴突在整个视叶的3个神经纤维网中都有分布。相比之下,视叶对5-HT抗血清的反应较弱,视叶神经纤维网中不存在代表5-HT阳性反应的粗大静脉曲张状纤维,只有一些排列规则的细小纤维。每侧视叶只有位于外髓附近的25个神经元呈现阳性反应,它们的分布位置与部分M3群的GABA能样神经元相同。本文还探讨了5-HT和GABA在调节视觉信息时可能发挥的作用[动物学报50(5):770—777,2004]。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号