首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodobacter sphaeroides: complexity in chemotactic signalling   总被引:1,自引:0,他引:1  
Most bacteria have much more complex chemosensory systems than those of the extensively studied Escherichia coli. Rhodobacter sphaeroides, for example, has multiple homologues of the E. coli chemosensory proteins. The roles of these homologues have been extensively investigated using a combination of deletion, subcellular localization and phosphorylation assays. These studies have shown that the homologues have specific roles in the sensory pathway, and they differ in their cellular localization and interactions with other components of the pathway. The presence of multiple chemosensory pathways might enable bacteria to tune their tactic responses to different environmental conditions.  相似文献   

2.
Myxococcus xanthus utilizes two distinct motility systems for movement (gliding) on solid surfaces: adventurous motility (A-motility) and social motility (S-motility). Both systems are regulated by the Frz signal transduction pathway, which controls cell reversals required for directed motility and fruiting body formation. The Frz chemosensory system, unlike the Escherichia coli chemotaxis system, contains proteins with multiple response regulator domains: FrzE, a CheA-CheY hybrid protein, and FrzZ, a CheY-CheY hybrid protein. Previously, the CheY domain of FrzE was hypothesized to act as the response regulator output of the Frz system. In this study, using a genetic suppressor screen, we identified FrzZ and showed FrzZ is epistatic to FrzE, demonstrating that FrzZ is the principal output component of the pathway. We constructed M. xanthus point mutations in the phosphoaccepting aspartate residues of FrzZ and demonstrated the respective roles of these residues in group and single cell motility. We also performed in vitro assays and showed rapid phosphotransfer between the CheA domain of FrzE and each of the CheY domains of FrzZ. These experiments showed that FrzZ plays a direct role as an output of the Frz chemosensory pathway and that both CheY domains of FrzZ are functional.  相似文献   

3.
Although it is generally accepted that mitochondria and chloroplasts are descended in evolution from bacteria, the potential contributions of their endosymbiont ancestors to specialized cellular pathways in development remain largely unexplored. Here we show that a motile behavior of mitochondria in Drosophila spermiogenesis is strikingly similar to the actin-based "comet tail" motility of several bacteria. A combination of electron and fluorescence microscopy demonstrates major reorganization and movement of mitochondria ahead of, and in close association with, dense conical arrays of actin filaments in the sperm individualization complex, which mediates the resolution of male germline syncytia into separate gametes. Because of several other parallels between the movement of the individualization complex and the motility behavior of some rickettsiae, the bacterial family from which mitochondria are most likely descended, this motility phenomenon is a strong candidate for a true vestige of endosymbiont behavior in contemporary mitochondria. The potential conservation of an ancient endosymbiont motility mechanism within a highly conserved feature of gametogenesis, the resolution of germline syncytia, may indicate a formative role for the endosymbiotic ancestor of mitochondria in the evolution of this developmental pathway.  相似文献   

4.
Sun H  Zusman DR  Shi W 《Current biology : CB》2000,10(18):1143-1146
Although flagella are the best-understood means of locomotion in bacteria [1], other bacterial motility mechanisms must exist as many diverse groups of bacteria move without the aid of flagella [2-4]. One unusual structure that may contribute to motility is the type IV pilus [5,6]. Genetic evidence indicates that type IV pili are required for social gliding motility (S-motility) in Myxococcus, and twitching motility in Pseudomonas and Neisseria [6,7]. It is thought that type IV pili may retract or rotate to bring about cellular motility [6,8], but there is no direct evidence for the role of pili in cell movements. Here, using a tethering assay, we obtained evidence that the type IV pilus of Myxococcus xanthus functions as a motility apparatus. Pili were required for M. xanthus cells to adhere to solid surfaces and to generate cellular movement using S-motility. Tethered cells were released from the surface at intervals corresponding to the reversal frequency of wild-type cells when gliding on a solid surface. Mutants defective in the control of directional movements and cellular reversals (frz mutants) showed altered patterns of adherence that correlate reversal frequencies with tethering. The behavior of the tethered cells was consistent with a model in which the pili are extruded from one cell pole, adhere to a surface, and then retract, pulling the cell in the direction of the adhering pili. Cellular reversals would result from the sites of pili extrusion switching from one cell pole to another and are controlled by the frz chemosensory system.  相似文献   

5.
The complex life cycle of Myxococcus xanthus includes predation, swarming, fruiting-body formation and sporulation. The genome of M. xanthus is large and comprises an estimated 7,400 open reading frames, of which approximately 605 code for regulatory genes. These include eight clusters of chemotaxis-like genes that define eight chemosensory pathways, most of which have dedicated functions. Although many of these chemosensory pathways have a role in controlling motility, at least two of these pathways control gene expression during development.  相似文献   

6.
Expression of Type IV pili (Tfp), multifunctional surface appendages expressed by Gram-negative species of medical and environmental significance, has previously been shown to be regulated by consensus two-component systems. Elucidation of their unique biogenesis pathway and the dynamics of pilus growth and retraction involved in motility have revealed a novel step at which regulation might be imposed. Studies of Tfp expression following adherence to host tissue clearly demonstrate regulation by modulation of the retraction process. In addition, a large set of components related to flagellar chemosensory pathways has been shown to influence Tfp expression levels in many species. Like their flagellar counterparts, the Tfp-dedicated homologues are proposed to function by regulating motor function. Rather than dictating the switch frequencies of organelle rotation, however, they are hypothesized to control the rates of fiber extrusion and retraction.  相似文献   

7.
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.  相似文献   

8.
The crawling movement of a cell involves protrusion of its leading edge, in coordination with the translocation of its cell body, and depends upon a cytoplasmic machinery able to respond to signals from the environment. Protrusion is now understood to be driven by actin polymerization, and signalling from membrane receptors to actin has been shown to be mediated by the Rho family of GTPases. However, a major gap in our understanding of regulated motility has been how to connect the signalling pathway to the motile machinery itself. Recent structural, biochemical and genetic studies have identified some of the missing links and provided a strong working model for the pathways and mechanisms by which the signals are interpreted and implemented.  相似文献   

9.
Food intake is detected by the chemical senses of taste and smell and subsequently by chemosensory cells?in the gastrointestinal tract that link the composition of ingested foods to feedback circuits controlling gut motility/secretion, appetite, and peripheral nutrient disposal. G-protein-coupled receptors responsive to?a range of nutrients and other food components have been identified, and many are localized to intestinal chemosensory cells, eliciting hormonal and neuronal signaling to the brain and periphery. This review examines the role of G-protein-coupled receptors as signaling molecules in the gut, with a particular focus on pathways relevant to appetite and glucose homeostasis.  相似文献   

10.
Wnts stimulate cell migration, although the mechanisms responsible for this effect are not fully understood. To investigate the pathways that mediate Wnt-dependent cell motility, we treated Chinese hamster ovary cells with Wnt-3a-conditioned medium and monitored changes in cell shape and movement. Wnt-3a induced cell spreading, formation of protrusive structures, reorganization of stress fibers and migration. Although Wnt-3a stabilized beta-catenin, two inhibitors of the beta-catenin/canonical pathway, Dickkopf-1 and a dominant-negative T cell factor construct, did not reduce motility. The small GTPase RhoA also was activated by Wnt-3a. In contrast to beta-catenin signaling, inhibition of Rho kinase partially blocked motility. Because Dishevelled (Dvl) proteins are effectors of both canonical and noncanonical Wnt signaling, we used immunofluorescent analysis and small interference RNA technology to evaluate the role of Dvl in cell motility. Specific knock-down of Dvl-2 expression markedly reduced Wnt-3a-dependent changes in cell shape and movement, suggesting that this Dvl isoform had a predominant role in mediating Wnt-3a-dependent motility in Chinese hamster ovary cells.  相似文献   

11.
Components of bacterial chemosensory pathways which sense via transmembrane receptors have been shown to localize to the cell poles. Many species, however, have operons encoding multiple putative chemosensory pathways, some including putative cytoplasmic receptors. In-genome fusions to single or multiple genes encoding components of two chemosensory pathways in Rhodobacter sphaeroides, cheOp2 and cheOp3, revealed that while sensory transducing proteins associated with transmembrane receptors and encoded on cheOp2 were targeted to the cell poles, the proteins associated with putative cytoplasmic receptors and encoded on cheOp3 were all targeted to a cytoplasmic cluster. No proteins were localized to both sites. These data show that bacteria target components of related pathways to different sites in the cell, presumably preventing direct cross-talk between the different pathways, but allowing a balanced response between extracellular and cytoplasmic signals. It also indicates that there is intracellular organization in bacterial cells, with specific proteins targeted and localized to cytoplasmic regions.  相似文献   

12.
A phylogenetic analysis of the purple photosynthetic bacteria   总被引:1,自引:0,他引:1  
It is proposed that gliding motility in bacteria is based on rotary assemblies located in the cell envelope and that these assemblies may be analogous to basal regions of bacterial flagella. This proposal rests on the following evidence: (i) Structures resembling flagellar basal regions have been demonstrated in cells ofCytophaga johnsonae andFlexibacter columnaris, and such structures are absent from one nonmotile mutant ofF. columnaris. (ii) The effects of inhibitors of energy metabolism on gliding motility are identical with their effects on prokaryotic fiagellar motility. (iii) The active movement of latex spheres along surfaces of gliding bacteria appears to depend on mechanisms responsible for motility and can be explained by the presence of rotary surface assemblies.  相似文献   

13.
Unlike simpler organisms, C. elegans possesses several distinct chemosensory pathways and chemotactic mechanisms. These mechanisms and pathways are individually capable of driving chemotaxis in a chemical concentration gradient. However, it is not understood if they are redundant or co-operate in more sophisticated ways. Here we examine the specialisation of different chemotactic mechanisms in a model of chemotaxis to NaCl. We explore the performance of different chemotactic mechanisms in a range of chemical gradients and show that, in the model, far from being redundant, the mechanisms are specialised both for different environments and for distinct features within those environments. We also show that the chemotactic drive mediated by the ASE pathway is not robust to the presence of noise in the chemical gradient. This problem cannot be solved along the ASE pathway without destroying its ability to drive chemotaxis. Instead, we show that robustness to noise can be achieved by introducing a second, much slower NaCl-sensing pathway. This secondary pathway is simpler than the ASE pathway, in the sense that it can respond to either up-steps or down-steps in NaCl but not both, and could correspond to one of several candidates in the literature which we identify and evaluate. This work provides one possible explanation of why there are multiple NaCl sensing pathways and chemotactic mechanisms in C. elegans: rather than being redundant the different pathways and mechanism are specialised both for the characteristics of different environments and for distinct features within a single environment.  相似文献   

14.
The vomeronasal pathway in rodents runs parallel to the main olfactory pathway and mediates responses to different classes of chemosensory stimuli. Both olfactory systems can converge and synergize to control reproductive behaviors and hormonal changes triggered by chemosensory cues. Novel experimental approaches expressing genetic transneuronal tracers in hypothalamic neurons regulating reproduction have set the stage to analyze how chemosensory inputs are integrated in the brain to elicit reproductive behaviors and hormonal changes, and how neuroendocrine status might modulate susceptibility to chemosensory cues.  相似文献   

15.
Outer hair cells are the mechanical effectors of the cochlear amplifier, an active process that improves the sensitivity and frequency discrimination of the mammalian ear. In vivo, the gain of the cochlear amplifier is regulated by the efferent neurotransmitter acetylcholine through the modulation of outer hair cell motility. Little is known, however, regarding the molecular mechanisms activated by acetylcholine. In this study, intracellular signaling pathways involving the small GTPases RhoA, Rac1, and Cdc42 have been identified as regulators of outer hair cell motility. Changes in cell length (slow motility) and in the amplitude of electrically induced movement (fast motility) were measured in isolated outer hair cells patch clamped in whole-cell mode, internally perfused through the patch pipette with different inhibitors and activators of these small GTPases while being externally stimulated with acetylcholine. We found that acetylcholine induces outer hair cell shortening and a simultaneous increase in the amplitude of fast motility through Rac1 and Cdc42 activation. In contrast, a RhoA- and Rac1-mediated signaling pathway induces outer hair cell elongation and decreases fast motility amplitude. These two opposing processes provide the basis for a regulatory mechanism of outer hair cell motility.  相似文献   

16.
The life cycle of Myxococcus xanthus includes co‐ordinated group movement and fruiting body formation, and requires directed motility and controlled cell reversals. Reversals are achieved by inverting cell polarity and re‐organizing many motility proteins. The Frz chemosensory pathway regulates the frequency of cell reversals. While it has been established that phosphotransfer from the kinase FrzE to the response regulator FrzZ is required, it is unknown how phosphorylated FrzZ, the putative output of the pathway, targets the cell polarity axis. In this study, we used Phos‐tag SDS‐PAGE to determine the cellular level of phospho‐FrzZ under different growth conditions and in Frz signalling mutants. We detected consistent FrzZ phosphorylation, albeit with a short half‐life, in cells grown on plates, but not from liquid culture. The available pool of phospho‐FrzZ correlated with reversal frequencies, with higher levels found in hyper‐reversing mutants. Phosphorylation was not detected in hypo‐reversing mutants. Fluorescence microscopy revealed that FrzZ is recruited to the leading cell pole upon phosphorylation and switches to the opposite pole during reversals. These results are consistent with the hypothesis that the Frz pathway modulates reversal frequency through a localized response regulator that targets cell polarity regulators at the leading cell pole.  相似文献   

17.
Myxococcus xanthus is a surface-motile bacterium that has adapted at least one chemosensory system to allow directed movement towards the slowly diffusible lipid phosphatidylethanolamine (PE). The Dif chemosensory pathway is remarkable because it has at least three inputs coupled to outputs that control extracellular matrix (ECM) production and lipid chemotaxis. The methyl-accepting chemotaxis protein, DifA, has two different sensor inputs that have been localized by mutagenesis. The Dif chemosensory pathway employs a novel protein that slows adaptation. Lipid chemotaxis may play important roles in the M. xanthus life cycle where prey-specific and development-specific attractants have been identified. Lipid chemotaxis may also be an important mechanism for locating nutrients by lung pathogens such as Pseudomonas aeruginosa.  相似文献   

18.
Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.  相似文献   

19.
Until recently, two-component signal-transduction pathways were thought to be exclusively found in bacteria. Some eukaryotic examples have now been characterized but, at least in the budding yeast Saccharomyces cerevisiae, it appears that this type of signal-transduction pathway is not utilized as extensively as in bacteria. Further, the few eukaryotic examples described suggest that two-component signal-transduction pathways might not be freestanding, as in prokaryotes, but might effect gene expression by regulating eukaryotic mitogen-activated protein (MAP) kinase pathways.  相似文献   

20.
Trail following by gliding bacteria   总被引:3,自引:2,他引:1       下载免费PDF全文
Slime trails, which are deposited on surfaces by gliding bacteria and which serve as preferential pathways for gliding motility, were tested for the species specificity of their support of movement. Among the pairs of bacteria tested, a variety of gliding bacteria and a flagellated bacterium moved along trails of unrelated species. Thus, the trails did not serve as pheromones. Rather, they may have guided gliding elasticotactically. Some biological implications of this finding are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号