首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a novel iterative scheme for adaptive smoothing of functional MR images. The method estimates a signal model at every voxel in the time-series, which is subsequently used in determining the weights of the smoothing kernel. The method does not require any information about the test hypothesis and is well-suited as a preprocessing step for both hypothesis-driven and data-driven analysis techniques. We demonstrate the performance of the proposed method by applying it to preprocess both simulated and real fMRI data. The method is found to effectively suppress the noise while preserving the shapes of the active brain regions.  相似文献   

2.
Cao J  Fussmann GF  Ramsay JO 《Biometrics》2008,64(3):959-967
Summary .   Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator–prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator–prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.  相似文献   

3.
Remodelling of trabecular bone is essentially affected by the mechanical load of the trabeculae. Mathematical modelling and simulation of the remodelling process have to include time-consuming calculations of the displacement field within the complex trabecular structure under loading. We present an adaptive diffuse domain approach for calculating the elastic bone deformation based on micro computer tomogram data of real trabecular bone structures and compared it with a conventional voxel-based finite element method. In addition to allowing for higher computational efficiency, the adaptive approach is characterised by a very smooth representation of the bone surface, which suggests that this approach would be suitable as a basis for future simulations of bone resorption and formation processes within the trabecular structure.  相似文献   

4.
This paper presents a new finite element simulation approach for surgical simulators. Based on the solution of the algebraic equations derived from a nonlinear elastic model, we propose a real time simulation rule based on the implicit relation between the displacements of contacted and free nodes. This rule is an analytic expression in the linear case, and an approximation of the implicit relation in the non-linear case. We also remove some of the restrictions on flexibility exhibited by previous linear and nonlinear approaches. In the linear case, real time reconfiguration of the contacted nodes and the boundary constraints is realized using the simulation rule, while in the nonlinear case, a similar result is obtained by employing affine mapping. These methods allow nonlinear material properties to be applied to real time tissue simulation, with an efficiency comparable to that of the tensor matrix method for linear elastic models.  相似文献   

5.
6.
Finite element (FE) modelling based on data from three-dimensional high-resolution computed tomography (CT) imaging systems provides a non-invasive method to assess structural mechanics. Automated mesh generation from these voxel based image data can be achieved by direct conversion to hexahedron elements, however these model representations have jagged edges. This paper proposes an automated method to generate smoothed FE meshes from voxel-based image data. Mesh fairing processes are utilized that allow constraints that control the smoothing process, and are computationally efficient. Surfaces of the mesh on the exterior, as well as interfaces between two tissues, can be smoothed by varying fairing parameters and constraint criteria. The method was tested on a variety of real and simulated three-dimensional data sets, resulting in both hexahedron and tetrahedron meshes. It was shown that the fairing process is linearly related to the number of smoothing iterations, and that peak stresses are reduced in FE simulations of the smoothed models. Although developed for micro-CT data sets, this fast and reliable mesh smoothing method could be applied to any three-dimensional image data where node and element connectivity have been defined.  相似文献   

7.
Green PE  Park T 《Biometrics》2003,59(4):886-896
Log-linear models have been shown to be useful for smoothing contingency tables when categorical outcomes are subject to nonignorable nonresponse. A log-linear model can be fit to an augmented data table that includes an indicator variable designating whether subjects are respondents or nonrespondents. Maximum likelihood estimates calculated from the augmented data table are known to suffer from instability due to boundary solutions. Park and Brown (1994, Journal of the American Statistical Association 89, 44-52) and Park (1998, Biometrics 54, 1579-1590) developed empirical Bayes models that tend to smooth estimates away from the boundary. In those approaches, estimates for nonrespondents were calculated using an EM algorithm by maximizing a posterior distribution. As an extension of their earlier work, we develop a Bayesian hierarchical model that incorporates a log-linear model in the prior specification. In addition, due to uncertainty in the variable selection process associated with just one log-linear model, we simultaneously consider a finite number of models using a stochastic search variable selection (SSVS) procedure due to George and McCulloch (1997, Statistica Sinica 7, 339-373). The integration of the SSVS procedure into a Markov chain Monte Carlo (MCMC) sampler is straightforward, and leads to estimates of cell frequencies for the nonrespondents that are averages resulting from several log-linear models. The methods are demonstrated with a data example involving serum creatinine levels of patients who survived renal transplants. A simulation study is conducted to investigate properties of the model.  相似文献   

8.
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.  相似文献   

9.
全局极小化方法及其在结构生物学中的应用近年来取得了显著的进展.适当简化的分子对接问题是全局极小化方法的一个很好目标,并且是当前一个相当活跃的研究领域.对接可分为两类:主要用于从头配体设计的细致对接和用于已知化合物数据库筛选以发现药物的粗略对接,它们对全局极小化算法的要求是不同的.简要评述了新出现的适合于对接问题的随机和确定性全局极小化算法,其中势能平滑算法看来很有希望,值得密切关注.  相似文献   

10.
Determination of material parameters for soft tissue frequently involves regression of material parameters for nonlinear, anisotropic constitutive models against experimental data from heterogeneous tests. Here, parameter estimation based on membrane inflation is considered. A four parameter nonlinear, anisotropic hyperelastic strain energy function was used to model the material, in which the parameters are cast in terms of key response features. The experiment was simulated using finite element (FE) analysis in order to predict the experimental measurements of pressure versus profile strain. Material parameter regression was automated using inverse FE analysis; parameter values were updated by use of both local and global techniques, and the ability of these techniques to efficiently converge to a best case was examined. This approach provides a framework in which additional experimental data, including surface strain measurements or local structural information, may be incorporated in order to quantify heterogeneous nonlinear material properties.  相似文献   

11.
Robust smooth segmentation approach for array CGH data analysis   总被引:2,自引:0,他引:2  
MOTIVATION: Array comparative genomic hybridization (aCGH) provides a genome-wide technique to screen for copy number alteration. The existing segmentation approaches for analyzing aCGH data are based on modeling data as a series of discrete segments with unknown boundaries and unknown heights. Although the biological process of copy number alteration is discrete, in reality a variety of biological and experimental factors can cause the signal to deviate from a stepwise function. To take this into account, we propose a smooth segmentation (smoothseg) approach. METHODS: To achieve a robust segmentation, we use a doubly heavy-tailed random-effect model. The first heavy-tailed structure on the errors deals with outliers in the observations, and the second deals with possible jumps in the underlying pattern associated with different segments. We develop a fast and reliable computational procedure based on the iterative weighted least-squares algorithm with band-limited matrix inversion. RESULTS: Using simulated and real data sets, we demonstrate how smoothseg can aid in identification of regions with genomic alteration and in classification of samples. For the real data sets, smoothseg leads to smaller false discovery rate and classification error rate than the circular binary segmentation (CBS) algorithm. In a realistic simulation setting, smoothseg is better than wavelet smoothing and CBS in identification of regions with genomic alterations and better than CBS in classification of samples. For comparative analyses, we demonstrate that segmenting the t-statistics performs better than segmenting the data. AVAILABILITY: The R package smoothseg to perform smooth segmentation is available from http://www.meb.ki.se/~yudpaw.  相似文献   

12.
Nonlinear (systems of) ordinary differential equations (ODEs) are common tools in the analysis of complex one‐dimensional dynamic systems. We propose a smoothing approach regularized by a quasilinearized ODE‐based penalty. Within the quasilinearized spline‐based framework, the estimation reduces to a conditionally linear problem for the optimization of the spline coefficients. Furthermore, standard ODE compliance parameter(s) selection criteria are applicable. We evaluate the performances of the proposed strategy through simulated and real data examples. Simulation studies suggest that the proposed procedure ensures more accurate estimates than standard nonlinear least squares approaches when the state (initial and/or boundary) conditions are not known.  相似文献   

13.
Using time-domain correlation techniques, the first- and second-order Wiener kernels have been calculated for the system mediating the human visual evoked response. The first-order kernels indicate the linear element is a resonant one, with a natural frequency near 20 Hz, and a memory of approximately 250 ms. The transport delay associated with this element is approximately 56 ms. The second-order kernels indicate a quadratic nonlinear element with a memory less than 20 ms. The analytic form of this element can be approximated by a parabola shifted to the right of the origin. A close correspondance between the spectrum of the first-order kernel and the spectrum of the main diagonal of the second-order kernel suggests the nonlinear element preceeds the linear one. Tests of reproducibility on the first-order kernel and the main diagonal of the second-order kernel suggest they are reliable describing functions for the system mediating the human visual evoked response.  相似文献   

14.
Yu Z  Lin X  Tu W 《Biometrics》2012,68(2):429-436
We consider frailty models with additive semiparametric covariate effects for clustered failure time data. We propose a doubly penalized partial likelihood (DPPL) procedure to estimate the nonparametric functions using smoothing splines. We show that the DPPL estimators could be obtained from fitting an augmented working frailty model with parametric covariate effects, whereas the nonparametric functions being estimated as linear combinations of fixed and random effects, and the smoothing parameters being estimated as extra variance components. This approach allows us to conveniently estimate all model components within a unified frailty model framework. We evaluate the finite sample performance of the proposed method via a simulation study, and apply the method to analyze data from a study of sexually transmitted infections (STI).  相似文献   

15.
Accommodation of the eyes, the mechanism that allows humans to focus their vision on near objects, naturally diminishes with age via presbyopia. People who have undergone cataract surgery, using current surgical methods and artificial lens implants, are also left without the ability to accommodate. The process of accommodation is generally well known; however the specific mechanical details have not been adequately explained due to difficulties and consequences of performing in vivo studies. Most studies have modeled the mechanics of accommodation under assumptions of a linearly elastic, isotropic, homogenous lens and lens capsule. Recent experimental and numerical studies showed that the lens capsule exhibits nonlinear elasticity and regional anisotropy. In this paper we present a numerical model of human accommodation using a membrane theory based finite element approach, incorporating recent findings on capsular properties. This study seeks to provide a novel perspective of the mechanics of accommodation. Such findings may prove significant in seeking biomedical solutions to restoring loss of visual power.  相似文献   

16.
Finding optimal three-dimensional molecular configurations based on a limited amount of experimental and/or theoretical data requires efficient nonlinear optimization algorithms. Optimization methods must be able to find atomic configurations that are close to the absolute, or global, minimum error and also satisfy known physical constraints such as minimum separation distances between atoms (based on van der Waals interactions). The most difficult obstacles in these types of problems are that 1) using a limited amount of input data leads to many possible local optima and 2) introducing physical constraints, such as minimum separation distances, helps to limit the search space but often makes convergence to a global minimum more difficult. We introduce a constrained global optimization algorithm that is robust and efficient in yielding near-optimal three-dimensional configurations that are guaranteed to satisfy known separation constraints. The algorithm uses an atom-based approach that reduces the dimensionality and allows for tractable enforcement of constraints while maintaining good global convergence properties. We evaluate the new optimization algorithm using synthetic data from the yeast phenylalanine tRNA and several proteins, all with known crystal structure taken from the Protein Data Bank. We compare the results to commonly applied optimization methods, such as distance geometry, simulated annealing, continuation, and smoothing. We show that compared to other optimization approaches, our algorithm is able combine sparse input data with physical constraints in an efficient manner to yield structures with lower root mean squared deviation.  相似文献   

17.
Diabetes is a group of metabolic diseases causing a system disorder, i.e.; it cannot be explained or understood by phenomena on single material scale. The diabetic foot is studied as flexible multibody structure by nonlinear finite element method. The physical and geometrical multiscale heterogeneity is solved by multilevel finite element approach. The diabetic tissue is described by internal coordinate's formalism, as complex multiscale process in tissue. The accompanying problem of the axisymetric wound healing is solved numerically. Some results related to foot deformity, stress and strain concentration and wound healing are presented.  相似文献   

18.
We propose a robust curve and surface estimator based on M-typeestimators and penalty-based smoothing. This approach also includesan application to wavelet regression. The concept of pseudodata, a transformation of the robust additive model to the onewith bounded errors, is used to derive some theoretical propertiesand also motivate a computational algorithm. The resulting algorithm,termed the es-algorithm, is computationally fast and providesa simple way of choosing the amount of smoothing. Moreover,it is easily described, straightforwardly implemented and canbe extended to other wavelet regression settings such as irregularlyspaced data and image denoising. Results from a simulation studyand real data examples demonstrate the promising empirical propertiesof the proposed approach.  相似文献   

19.
Indirect gradient analysis, or ordination, is primarily a method of exploratory data analysis. However, to support biological interpretations of resulting axes as vegetation gradients, or later confirmatory analyses and statistical tests, these axes need to be stable or at least robust into minor sampling effects. We develop a computer-intensive bootstrap (resampling) approach to estimate sampling effects on solutions from nonlinear ordination.We apply this approach to simulated data and to three forest data sets from North Carolina, USA and examine the resulting patterns of local and global instability in detrended correspondence analysis (DCA) solutions. We propose a bootstrap coefficient, scaled rank variance (SRV), to estimate remaining instability in species ranks after rotating axes to a common global orientation. In analysis of simulated data, bootstrap SRV was generally consistent with an equivalent estimate from repeated sampling. In an example using field data SRV, bootstrapped DCA showed good recovery of the order of common species along the first two axes, but poor recovery of later axes. We also suggest some criteria to use with the SRV to decide how many axes to retain and attempt to interpret.Abbreviations DCA= detrended correspondence analysis - SRV= scaled rank variance  相似文献   

20.
This work was motivated by the problems of analysing detailed 3D models of vascular districts with complex anatomy. It suggests an approach to prescribing realistic boundary conditions to use in order to obtain information on local as well as global haemodynamics. A method was developed which simultaneously solves Navier-Stokes equations for local information and a non-linear system of ordinary differential equations for global information. This is based on the principle that an anatomically detailed 3D model of a cardiovascular district can be achieved by using the finite element method. In turn the finite element method requires a specific boundary condition set. The approach outlined in this work is to include the system of ordinary differential equations in the boundary condition set. Such a multiscale approach was first applied to two controls: (i) a 3D model of a straight tube in a simple hydraulic network and (ii) a 3D model of a straight coronary vessel in a lumped-parameter model of the cardiovascular system. The results obtained are very close to the solutions available for the pipe geometry. This paper also presents preliminary results from the application of the methodology to a particular haemodynamic problem: namely the fluid dynamics of a systemic-to-pulmonary shunt in paediatric cardiac surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号